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One of the outstanding problems in nonequilibrium physics is to precisely understand when and how
physically relevant observables in many-body systems equilibrate under unitary time evolution. General
equilibration results show that equilibration is generic provided that the initial state has overlap with
sufficiently many energy levels. But results not referring to typicality which show that natural initial states
actually fulfill this condition are lacking. In this work, we present stringent results for equilibration for
systems in which Rényi entanglement entropies in energy eigenstates with finite energy density are
extensive for at least some, not necessarily connected, subsystems. Our results reverse the logic of common
arguments, in that we derive equilibration from a weak condition akin to the eigenstate thermalization
hypothesis, which is usually attributed to thermalization in systems that are assumed to equilibrate in the
first place. We put the findings into the context of studies of many-body localization and many-body scars.
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Over recent years the study of the relaxation to equi-
librium of complex many-body systems has attracted great
attention. This interest can be motivated from at least two
points of view. From a foundational viewpoint, it is
desirable to understand how statistical equilibrium ense-
mbles emerge within the framework of unitary quantum
mechanics—without introducing any external probability
measures. It is then necessary to first explain how systems
undergoing unitary evolution attain equilibrium at all. A
key ingredient to explain this behavior has been found to be
the dynamical buildup of entanglement from low-entangled
initial states and results showing equilibration under quite
general conditions have been derived [1–12]. The increase
of entanglement over time is a generic feature of complex
quantum systems and leads to an increase of the entropy of
subsystems over time reminiscent to the second law of
thermodynamics.
From a more concrete perspective, the recent interest in

the study of nonequilibrium dynamics is motivated by the
fact that such dynamics can now be realized in well-
controlled experiments, for example, in ion traps or optical
lattices [13–18]. Moreover, the discovery of many-body
localized systems [19], which equilibrate [20] but fail to
thermalize [18], shows that there remains much to be
understood about the equilibration behavior of complex
quantum systems. Despite the great progress in under-
standing the equilibration behavior of many-body systems,
rigorous results showing that systems with natural initial
states equilibrate to high precision based on concrete
physical properties have been lacking.
In this Letter we aim to fill this gap by taking a new

perspective to the problem. To do this, we carefully

reconsider the entanglement content of energy eigenstates
in complex, interacting many-body systems and devise a
working definition of “entanglement-ergodic” systems
whose energy eigenstates at finite energy density have a
sufficient amount of entanglement between suitable sub-
systems. The condition we propose is very weak—yet we
show that generically such systems equilibrate to expo-
nential precision in the volume of the system if the initial
state is given by a product state with finite, nonzero energy
density. Commonly, one assumes equilibration and invokes
the eigenstate thermalization hypothesis (ETH) [21–25] to
make thermalization plausible. Here, we stringently derive
equilibration from a highly plausible condition similar to,
but we believe much weaker than the eigenstate thermal-
ization hypothesis.
Themain ingredient of our proof is a careful discussion of

Rényi entanglement entropies in energy eigenstates with
finite energy density. Combining this insight with the
strongly peaked energy distribution of weakly correlated
states and the monotonicity of Rényi entropies allows us to
prove that experimentally accessible initial states are well
smeared out over the energy spectrum, which implies high-
precision equilibration for generic interactingHamiltonians.
Formal setting.—We consider local Hamiltonians

HΛ ¼
X
x∈Λ

hx ð1Þ

on a regular lattice Λ in ν spatial dimensions with
N ≔ jΛj lattice sites. The Hilbert space is ⊗x∈Λ Hx with
dimHx ¼ d. Since we will be talking about the scaling of
quantities with the lattice size, HΛ should be seen as a
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sequence of Hamiltonians, which is, for example, given by
a family of translational invariant system on larger and
larger square lattices with periodic boundary conditions.
We call HΛ l local if the diameter of the support of each hx
is at most l, strictly local if it is l local with l independent
of the system size N, and uniformly bounded if khxk ≤ h
for all x ∈ Λ independent of the system size. Since we are
mostly interested in energy densities instead of total
energies later, we make the unusual choice to label
eigenvectors of the Hamiltonian by their energy densities
ei as jeiiΛ ¼ jEi=NiΛ, with i ¼ 1;…; dN and Ei being the
eigenvalue of HΛ corresponding to jeiiΛ. We always
assume that the ground state has vanishing total energy.
From now on, we will often drop the subscript Λ from
states and Hamiltonians to simplify the notation.
Equilibration in closed systems.—We now briefly review

general equilibration results that we will be using in the
following. Consider any bounded observable A and any
initial state ρ. Denote the time evolved states by ρðtÞ. We
want to study whether the expectation value hAðtÞiρ ¼
Tr½ρðtÞA� equilibrates over time. In a finite system, perfect
equilibration, in the sense that hAðtÞi becomes static for all
times after the equilibration process, is impossible due to
recurrences. However, it is perfectly possible that this value
is very close to a stationary value Ā for most of the time,
with rare deviations. The value Ā is then necessarily the
infinite time average

Ā ≔ hAðtÞi ¼ lim
T→∞

1

T

Z
T

0

Tr½ρðtÞA� ¼ TrðωAÞ; ð2Þ

where ω denotes the time average ρðAÞ, which is again a
valid density matrix. In the case where the Hamiltonian has
no degenerate energy differences Gði;jÞ ¼ Ei − Ej, it has
been shown that the time-averaged fluctuations around the
equilibrium value are bounded by [5]

VarðA;H; ρÞ ≔ ðhAðtÞi − ĀÞ2 ≤ kAk2e−S2ðωÞ; ð3Þ

where Sα denotes the Rényi-α entropy

SαðρÞ ≔
1

1 − α
log ½TrðραÞ�: ð4Þ

We note for later use that in the limit α → 1 the von
Neumann entropy is recovered and that Rényi entropies
are monotonically decreasing in α. The condition of non-
degenerate energy differences is generically fulfilled in
interacting systems [26]. However, generalizations of the
above result also exist if this condition isweakly violated [8].
It is also possible to show VarðA;H; ρÞ ≤ 3kAk2e−S∞ðω0Þ,
where ω0 is the same operator as ω but with its largest
eigenvalue replaced by zero [2], which sometimes gives a
stronger bound. In particular, it also incorporates the case of
energy eigenstates, which are always fully equilibrated. It is
important to stress, however, that the bound Eq. (3) does

not lead to implications on the time it takes to observe
equilibration.
Similarly to results in terms of bounded observables, one

can also bound the distance of a local reduced state on a
subsystem S from its time average as [3]

kTrSc ½ρðtÞ� − TrScðωÞk1 ≤ 2dSe−S2ðωÞ=2: ð5Þ

Here, k:k1 denotes the trace norm, which bounds the
difference in expectation value of all normalized observ-
ables as

kρ − σk1 ¼ max
A;kAk¼1

jTrðρAÞ − TrðσAÞj: ð6Þ

Roughly speaking, the role of the norm of the observables
in the previous bound is here taken by the dimension of the
subsystem. We conclude that a large Rényi-2 entropy of
the time-averaged state is a sufficient condition for a
generic, closed quantum system to equilibrate eventually.
Unfortunately, however, there are few general and rigorous
results which show that natural initial states lead to time-
averaged states whose energy distribution has a large
Rényi-2 entropy [27,28]. Reference [28] makes it highly
plausible from an operational point of view that states that
can be prepared in experiments have large effective
dimension, but does not show it for concrete states.
Reference [27] shows that states with finite correlation
length have Rényi-2 entropy of at least roughly the order
logðNÞ. While this formally leads to equilibration as
N → ∞, it is insufficient to obtain a finite entropy density
at equilibrium (which is crucial from a thermodynamic
point of view) and requires very large system sizes to
explain equilibration. In the following, we show that in
systems that have a sufficiently large amount of entangle-
ment in energy eigenstates with finite energy density, finite
entropy density and hence exponentially good equilibration
in the system size follows for initial product states.
Entanglement and Rényi entropies.—Here, we are inter-

ested in ergodic, nonintegrable systems. Contrary to the
case of classical mechanics, there is no generally agreed
upon definition of what it exactly means for a quantum
system to be ergodic or nonintegrable [29]. In recent years,
it has been argued that a general characteristic of systems
which can be considered ergodic is that energy eigenstates
fulfill a so-called volume law in terms of their entanglement
content. The condition we propose is inspired from this
observation, but is much weaker. It is therefore useful to
discuss volume laws before stating our condition. Consider
an energy eigenvector with finite energy density jei and
denote by ρAðeÞ the reduced density matrix on some
(contiguous) subsystem A which is smaller than one-half
of the total system, but still contains a finite fraction of the
total system. A volume law means that the entanglement
measured by a Rényi entropy Sα grows like the volume
of A as
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Sα½ρAðeÞ� ∼ jAj: ð7Þ

A natural question to ask is for which value of α this
relation is supposed to hold. We now argue that this relation
is a meaningful criterion only if α > 1. This might come as
a surprise since it is common to measure entanglement in
terms of the von-Neumann entropy S1. This is due to the
fact that the von-Neumann entropy describes the fraction of
EPR pairs that can be distilled from asymptotically many
copies of a state by local operations and classical commu-
nication [30]. However, the examples presented in the
following proposition show that a volume law in terms of
von-Neumann entropy is not a very useful criterion to
determine whether a state of a many-body system deviates
strongly from an unentangled state.
Proposition 1: (Counterexample) For any 1 > ϵ > 0

there exist state vectors jΨϵi on Λ with the following
properties: (1) jΨϵi has overlap exponentially close to 1 − ϵ
in N with a product state vector jΨi. (2) jΨϵi fulfills a
volume law in the von Neumann entropy: There exist
regions A with jAj ¼ N=2 such that S1ðρAÞ ≃ ϵ

2
logðdÞN.

(3) All Rényi entropies with α > 1 are bounded by a
constant in the system size, SαðρAÞ ≤ const.
The state vectors that fulfill these condition are simply of

the form jΨϵi ∝ ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p jΨi þ ffiffiffi
ϵ

p jΩi, where jΩi is maxi-
mally entangled between A and its complement. The proof
of these properties is given in the Supplemental Material
[31], Sec. B. Given Properties 1 and 3, it cannot reasonably
be said that the amount of entanglement in jΨϵi grows
volumelike—even though it fulfills a volume law in terms
of von-Neumann entropy. At the same time it suggests that
we should require a volume law in terms of some Rényi
entropy with α > 1. Importantly, the inequality (proven in
the Supplemental Material [31], Sec. A)

SαðρÞ ≥ S∞ðρÞ ≥
β − 1

β
SβðρÞ; ∀ α ≥ 0; ð8Þ

which holds for any β > 1, shows that all the Rényi
entropies with α > 1 have the same scaling behavior. It
therefore does not matter which one we consider and in the
following we therefore mostly consider the case α ¼ 2.
Recently, there has been an increasing amount of

numerical results and theoretical arguments that show that
energy eigenstates of generic nonintegrable quantum sys-
tems with finite energy density have this property (see, for
example, Refs. [43–49]). These results fit well to, and
indeed are partly motivated by, the observation that certain
properties of complex, strongly interacting systems at finite
energy density can be well described by assuming that their
Hamiltonians are random matrices [50–55], despite the
Hamiltonians being local and thus belonging to a set of
measure zero. It is well known that Haar random quantum
states have extensive Rényi entanglement entropy on
bipartite systems with very high probability [56–60].

Since eigenstates of random Hamiltonians are distributed
according to the Haar measure, we expect that eigenstates
of random Hamiltonians fulfill a volume law in terms of all
Rényi entropies with very high probability [61].
Entanglement ergodicity.—In essence, in the following

we will show that an extensive amount of entanglement
entropy in energy eigenstates for Rényi entropies with α>1
is a sufficient criterion for exponentially good equilibration.
Importantly, however, we will significantly weaken the
assumption from volume laws—where the subsystem
under consideration is assumed be a contiguous region—
by allowing the subsystem to be almost completely
arbitrary. The only property that we demand from the
subsystem is that it includes a finite fraction of the total
system. In particular, it need not be connected and further
may be chosen differently for every energy eigenstate. For
example, it may have a fractal-like shape (up to the lattice
spacing), or consist of a sublattice of spins that are far away
from each other when compared to some natural length
scale of the system. In the following, we call this (much
weaker) form of a volume law a weak volume law. In
particular, even states that have a finite correlation length,
such as matrix product states (MPS), can be expected to
generically follow a weak volume law—unless they are
product states themselves.
We will now give a formal definition of what we demand

from an entanglement-ergodic system. Notably, this defi-
nition is perfectly compatible with the mindset of the ETH
that argues basically that eigenstates of local Hamiltonians
in the bulk of the spectrum should be locally indistinguish-
able from Gibbs states due to their entanglement.
Definition 1.—We call a sequence of systems of

increasing system size entanglement ergodic, if there exists
a system size N0 and a function g∶R → ½0;∞Þ, such that
for all system sizes N ≥ N0 it holds that (1) (Weak volume
law) For every eigenvector jeiiΛ there exists some
subsystem AΛ such that the reduced state ρAΛ

ðeiÞ ≔
TrAc

Λ
ðjeiiheijΛÞ fulfills

S2½ρAΛ
ðeiÞ� ≥ gðeiÞN: ð9Þ

(2) The function g is sufficiently well behaved: It is
Lipschitz continuous and positive for nonextremal energy
densities, i.e., gðeÞ > 0 for 0 < e < emax.
Some remarks on this definition are in order. (i) As

shown by Eq. (8), we could have replaced the Rényi-2
entropy with any Rényi entropy with α > 1 and would have
obtained an equivalent definition. (ii) We only require that
there is a lower bound on the entropy in the region AΛ as a
function of the energy density and not that the entropy is
given by the function e ↦ gðeÞ. In particular, we do not
require that eigenstates with the same energy density also
have the same Rényi entanglement entropy and allow for
the possibility that states with vanishing energy density do
not have a large amount of entanglement. For example, the
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ground state of the system may be a product state.
Similarly, we impose Lipschitz continuity of the function
g for simplicity and concreteness. Similar conclusions as in
the following can be reached by imposing different
regularity assumptions on g. (iii) It would be perfectly
fine for all what follows to allow for additional negative but
subleading terms, e.g., in Oð ffiffiffiffi

N
p Þ. These terms would only

change the subleading behavior of our final results and may
encode nonasymptotic information about the entropy in
eigenstates. For simplicity, we omit such terms here.
(iv) We emphasize again that we only demand a weak

volume law, i.e., that for any system size and any eigenstate
there exists some finite fraction of the total system AΛ
whose entropy is sufficiently large. It is not required that
this holds for all such subsystems nor is it required that this
subsystem has any particular shape. For example, it could
consist of every 10th site of the lattice. Nevertheless, in
generic, strongly interacting systems, we expect that
choosing AΛ simply as one-half of the system is sufficient.
(v) Importantly, the weak assumption on the subsystem

AΛ allows even MPS-like eigenstates, which fulfill an area
law [62] for contiguous regions, to be entanglement
ergodic. As a concrete example, we prove the following
statement in the Supplemental Material [31], Sec. C: States
that are prepared by a translationally invariant, finite-depth,
local quantum circuit and are not a product state have
extensive in Rényi-2 entropy on a finite fraction of the
system. Similarly, we expect an analogous result to hold
more generally for generic MPS. A detailed discussion on
the application of our framework to generic MPS is
provided in the Supplemental Material [31], Sec. C.
These results show that also systems featuring many-body
localization [19], whose eigenstates are expected to be
approximable by matrix product states [63,64], may fall
within the framework of entanglement ergodicity. It is well
known that such systems equilibrate, but fail to also
thermalize. Thus even if we refer to the key property as
entanglement ergodicity, it is a significantly weaker con-
dition than what is commonly understood as ergodicity in
the current literature.
(vi) Similarly, we expect the notion of entanglement

ergodicity to be weaker than the ETH: if one assumes that
the ETH applies to some subsystems containing a finite
fraction of the total system, then we strongly believe that
the ETH implies entanglement ergodicity and hence equili-
bration with high precision (see Supplemental Material
[31], Sec. G).
(vii) With stronger assumptions on the regions AΛ,

we can extend the applicability of the definition of
entanglement ergodicity to states related by quasilocal
unitaries (those generated by time evolution under local
Hamiltonians): For systems in which the regions AΛ have
an asymptotically vanishing surface-to-volume ratio, entan-
glement ergodicity is stable under quasilocal unitaries.
The precise meaning and formal proof of this statement

is formulated in Supplemental Material [31], Sec. E.
Intuitively it follows by observing that time evolution
under a local Hamiltonian for a finite time can only
decrease the entropy of a subregion by an amount that is
proportional to its boundary, since the entropy has to “flow”
out of the subregion through its boundary.
Consequences of entanglement ergodicity.—Let us now

discuss the consequences of entanglement ergodicity.
We first state a result on the diagonal entropy in entangle-
ment-ergodic systems, to then turn to the implication that
entanglement-ergodic systems equilibrate exponentiallywell.
Theorem 2: (Diagonal entropy in entanglement-ergodic

systems) Consider an entanglement-ergodic system with
strictly local, uniformly bounded Hamiltonian. Then for
any energy density e > 0 there exists a constant kðeÞ > 0
and a system-size N0ðeÞ such that for all system sizes
N > N0ðeÞ and for all product states jΨiΛ with energy
density e, we have

SαðωΛÞ ≥ kðeÞN; ð10Þ

where ωΛ is the time average of jΨihΨjΛ.
As a direct consequence of this result we obtain from

Eq. (3) the following bounds on equilibration.
Corollary 3: (Equilibration in entanglement-ergodic

systems) Under the same conditions as in Theorem 2
and the additional assumption of nondegenerate energy
gaps of the Hamiltonian, there exists a constant kðeÞ > 0,
such that

VarðA;HΛ; jΨihΨjΛÞ ≤ kAk2Ce−kðeÞN: ð11Þ

Similar bounds hold for the reduced state on a small
subsystem, as implied by Eq. (5). The proof of Theorem 2
is given in the Supplemental Material [31], Sec. D. It relies
on recognizing that an extensive amount of Rényi entan-
glement entropy implies that a state has exponentially small
overlap with all product states and to combine this state-
ment with a recent central limit-type theorem for the energy
distribution in product states [32]. The premises of
Theorem 2 require the initial state to be a product state.
In the Supplemental Material [31], Sec. F, we further
extend our results to the case where the initial state is
prepared from a product state by a quasilocal unitary under
the additional assumption that the regions AΛ have vanish-
ing surface-to-volume ratio. We obtain equilibration
bounds scaling as O½expð−NβÞ� for some 0 < β < 1.
Quantum many-body scars.—Recently, it has been

observed that sets of atypical energy eigenstates with small
amounts of entanglement may rarely show up even at finite
energy density in nonintegrable, kinetically constrained
many-body systems—a phenomenon dubbed “quantum
many-body scars,” which leads to exceedingly slow equili-
bration with long-lived oscillations from certain initial
product states [65–69]. Even a toy model with complete
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absence of equilibration for certain initial product states
has been constructed [70]. This complete absence of
equilibration can be explained due to a SU(2) symmetry
in the subspace of many-body scars [70], which also
emerges approximately in more realistic Hamiltonians
and breaks the assumption of nondegenerate energy gaps.
Furthermore, many-body scars may have large squared
overlap with the initial product state (of order 1=N), which
implies that such systems also violate entanglement-
ergodicity within the subspace of many-body scars.
Conclusion.—We carefully formalized a notion of ergo-

dicity based on extensive Rényi entanglement entropies in
energy eigenstates and showed that this notion suffices to
prove exponentially precise equilibration for Hamiltonians
with nondegenerate energy gaps. Our condition is quite
weak and we expect it to be fulfilled for generic interacting
systems. The notion of ergodicity we introduced is con-
nected to the eigenstate thermalization hypothesis (ETH),
which asserts that local reduced states of energy eigenstates
with finite energy density already resemble the reduced
state of a corresponding Gibbs state. We thereby introduce
a new perspective to the study of nonequilibrium quantum
systems: We do not have to assume equilibration for
systems to become apparently stationary and then turn to
the ETH to show thermalization. Instead, we show that
equilibration already follows from a weak ETH-like
assumption. In fact, in this case the ETH implies much
more, since our definition does, in general, not imply that
the system also thermalizes (this apparent shortcoming is
necessary when formulating a criterion that may also
apply to many-body localized systems). Here, we did
not discuss the timescales for relaxation to equilibrium,
but were interested in the precision of equilibration after
arbitrarily long times. While some progress in understand-
ing equilibration timescales has been made recently, both
in integrable [71–80] and generic, nonintegrable systems
[8,81–88], finding rigorous arguments bounding equilibra-
tion timescales from reasonable assumptions remains an
outstanding open problem.
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