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We present a framework for controlling the observables of a general correlated electron system driven by
an incident laser field. The approach provides a prescription for the driving required to generate an arbitrary
predetermined evolution for the expectation value of a chosen observable, together with a constraint on the
maximum size of this expectation. To demonstrate this, we determine the laser fields required to exactly
control the current in a Fermi-Hubbard system under a range of model parameters, fully controlling the
nonlinear high-harmonic generation and optically observed electron dynamics in the system. This is
achieved for both the uncorrelated metalliclike state and deep in the strongly correlated Mott insulating
regime, flipping the optical responses of the two systems so as to mimic the other, creating “driven
imposters.” We also present a general framework for the control of other dynamical variables, opening a
new route for the design of driven materials with customized properties.
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Introduction.—Ohm’s law is one of the most ubiquitous
relationships in all of physics, beginning as an empirical
law [1] before both the Drude and free electron models
provided a quantitative justification for its existence [2]. In
the Ohmic regime the relationship between a driving field
and the observed current is linear, so that for a given current
there is a unique and trivial solution for the control field
required to produce it. While it is possible to find examples
of Ohm’s law persisting down to the atomic scale [3],
physical systems abound with phenomena such as persis-
tent currents [4] and high harmonic generation (HHG)
[5–7] where the linear relationship breaks down. This has
important consequences for the control of such systems,
where the manipulation of an expectation with a nonlinear
dependence on a control field presents both significant
challenges and opportunities for exploitation [8,9]. A
diverse array of strategies has been previously proposed
to address this, including both optimal [10–13] and local
[14,15] quantum control.
The ability to manipulate expectation values in this way

is highly desirable, with obvious benefits. It presents an
opportunity in both materials science and chemistry to
substitute simpler and cheaper compounds that can mimic
the desired properties of more expensive materials [16–20].
A concrete example of the need for control strategies
beyond the linear regime can be found in recent exper-
imental [21] and theoretical [22] work which demonstrates
photoinduced superconductivity in materials above their
critical temperature Tc [23]. This raises the possibility of
designing laser pulses that induce superconductivity or

other dynamical phase transitions, but to do so requires the
ability to control expectations beyond the linear regime.
In this Letter, we present a method for time-dependent

control of expectations within correlated many-body elec-
tronic systems, when systems observables have a highly
nonlinear dependence on the control field EðtÞ. Since this
method allows an expectation value to follow (or “track”)
an essentially arbitrary function of time, up to a scaling
factor, we will refer to it as tracking control [24–29]
(for further details on this and other control strategies,
see Ref. [30]).
One of the principal advantages of tracking control is

its computational efficiency as compared to the iterative
optimization of optimal control [25]. Exact tracking control
can however suffer from singularities in the control field as
a consequence of specifying a track inconsistent with
physical dynamics. The model presented here possesses
several key advantages to address this. By working in a
finite dimensional context, this method is explicitly appli-
cable to many-electron solid-state systems on a discrete
lattice. The tracking equations derived from this model are
insensitive as to whether the system is evolved as a closed
or open system, and it is also possible to determine the
precise constraints necessary to avoid singularities and
guarantee a unique evolution of the system. This is
particularly desirable, as it removes one of the main
obstacles to tracking control—the ability to determine if
a trajectory is physically realizable. We test the new method
in the highly nonlinear regime of HHG in the Hubbard
model, using it both to induce arbitrarily designed currents,
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as well as creating “driven imposters” where the optical
spectrum of one material mimics that of another.
Summary of results.—Our goal is to implement a

tracking control [28] model for a generalN-electron system
subjected to a laser pulse. Specifically, we wish to calculate
a control field such that the trajectory of an expectation
hÔðtÞi under the Hamiltonian is described by some desired
functionOTðtÞ [24–27]. While the general tracking strategy
detailed here is suitable for any Hamiltonian (see Ref. [30]),
we will focus on the discrete 1D Fermi-Hubbard model as a
paradigmatic model of strongly correlated electron sys-
tems, given by

ĤðtÞ ¼ −t0
X
jσ

�
e−iΦðtÞĉ†jσ ĉjþ1σ þ eiΦðtÞĉ†jþ1σ ĉjσ

�

þU
X
j

ĉ†j↑ĉj↑ĉ
†
j↓ĉj↓; ð1Þ

where the correlated physics is induced by the on-site
repulsive U term [31], with the phase ΦðtÞ ¼ aAðtÞ,
describing the applied field, where a is the lattice constant
and AðtÞ is the field vector potential.
Our aim is to have the expectation of the current operator

ĴðtÞ [32],

ĴðtÞ ¼ −iat0
X
jσ

�
e−iΦðtÞĉ†jσ ĉjþ1σ − H:c:

�
; ð2Þ

track some predetermined target function JTðtÞ, such that
hĴðtÞi ¼ JTðtÞ. Imposing this constraint on the system
evolution iðdjψi=dtÞ ¼ ĤðtÞjψi is equivalent to evolving
the wave function via a nonlinear evolution given by

i
djψi
dt

¼ ĤTðJTðtÞ;ψÞjψi; ð3Þ

where ĤTðJTðtÞ;ψÞ is the “tracking Hamiltonian” which
takes the target function JTðtÞ as a parameter, and acquires
a dependence on the current state of the system, ψ . An
explicit form for ĤTðJTðtÞ;ψÞ can then be found as

ĤTðJTðtÞ;ψÞ ¼
X
σ;j

Pþe−iθðψÞĉ
†
jσ ĉjþ1σ;

þ
X
σ;j

P−eiθðψÞĉ
†
jþ1σ ĉjσ

þU
X
j

ĉ†j↑ĉj↑ĉ
†
j↓ĉj↓; ð4Þ

P� ¼ −t0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − X2ðt;ψÞ
q

� iXðt;ψÞ
�
; ð5Þ

Xðt;ψÞ ¼ JTðtÞ
2at0RðψÞ

: ð6Þ

The ψ dependence is defined by the neighbor hopping
expectation in a polar form,

hψ j
X
jσ

ĉ†jσ ĉjþ1σjψi ¼ RðψÞeiθðψÞ: ð7Þ

Under this tracking Hamiltonian, the evolution of ψ is
equivalent to that given by the Hamiltonian in Eq. (1) under
the action of a field,

ΦðtÞ ¼ ΦTðtÞ ¼ arcsin

�
−JTðtÞ

2at0RðψÞ
�
þ θðψÞ: ð8Þ

The form of this tracking Hamiltonian imposes some
constraints on the currents that can be tracked successfully.
In order to ensure that the evolution is unitary, and
that Eq. (3) has a unique solution for ψ, it is sufficient
to require ∀ψ , and that

jXðt;ψÞj< 1 − ϵ1 ð9Þ

RðψÞ > ϵ2; ð10Þ

where ϵ1=2 are small finite constants. When these con-
straints are satisfied, the tracking Hamiltonian is not only
Hermitian (i.e., P†

þ ¼ P−), but guarantees a unique solution
for ψ [33] despite the nonlinear character of its evolution.
A full derivation of this result, along with a physical
interpretation of the constraints, is given in Ref. [30]. This
result, derived from functional analysis [34], stands in
sharp contrast to some discrete models, in which multiple
solutions for tracking are possible [35].
Importantly, the constraints above define the limits on

the size of expectations it is possible to produce with
physically realizable control fields. While in principle the
constraint of Eq. (9) is a highly nonlinear inequality in ψ , in
practice it is relatively easy to satisfy via a heuristic scaling
of the target to be tracked, as these constraints limit only the
peak amplitude of current in the evolution and otherwise
allow for any function to be tracked when appropriately
scaled. If one is concerned only with reproducing the shape
of the target current, then using a scaled target JsðtÞ ¼
kJTðtÞ such that jJsðtÞj < 2at0RðψÞ will allow tracking
without problem. Alternately, if one treats the lattice
constant a as a tunable parameter, this can always be set
for the tracking system so as to satisfy Eq. (9). This
approach also ensures the avoidance of singularities in the
trajectories, which have often afflicted other tracking
control approaches [25,28,36].
This tracking strategy can be generalized for an arbitrary

expectation value of interest. Tracking of an observable
Ô such that hÔi ¼ OTðtÞ, one requires the following
expectations:
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ROðψÞeiθOðψÞ ¼
X
σ;j

h½ĉ†jσ ĉjþ1σ;
ˆ̂O�i; ð11Þ

BðψÞ ¼ −iU
X
j

h½ĉ†j↑ĉj↑ĉ†j↓ĉj↓; Ô�i: ð12Þ

Using these expectations, Eqs. (4) and (5) may be used to
track the observable using the substitutions JTðtÞ ¼ OTðtÞ,
RðψÞeiθðψÞ ¼ ROðψÞeiθOðψÞ, with

Xðt;ψÞ ¼
dOTðtÞ

dt − BðψÞ
2t0ROðψÞ

; ð13Þ

and constraints on Xðt;ψÞ given by Eq. (9) in the same
fashion as current tracking. More details deriving tracking
of arbitrary observables are given in Ref. [30].
Finally, we note that the expression for the tracking field

in Eq. (8) depends only implicitly on the system evolution
through RðψÞ and θðψÞ, and is derived only through the
definition of ĴðtÞ. This means that the definition of the
tracking field (and therefore the tracking Hamiltonian)
is insensitive to whether the system is evolving in a
Liouvillian (closed) or Lindbladian (open) manner.
Reference systems.—In order to test our tracking strategy

we consider the 1D Fermi-Hubbard model at both
U=t0 ¼ 0, where the system is in a metallic Tomonaga-
Luttinger liquid phase [37], andU=t0 ¼ 7where the system
is deep in a Mott insulating regime with large optical band
gap [38]. We consider an L ¼ 10 site Hubbard chain with
periodic boundary conditions with an average of one
electron per site, a hopping parameter of t0 ¼ 0.52 eV,
and lattice constant of a ¼ 4 Å. While this system size is
not at the thermodynamic limit of the model, it is sufficient
to allow for demonstration of the method and qualitative
agreement with the bulk limit [39], while allowing for
an exact propagation of the wave function so as not to
introduce errors from an approximate time evolution. To
each reference system we apply a laser pulse of duration
N ¼ 10 periods, described by the Peierls phase

ΦðtÞ ¼ a
E0

ω0

sin2
�
ω0t
2N

�
sinðω0tÞ: ð14Þ

This is related to the electric field EðtÞ via aEðtÞ ¼
−ðdΦ=dtÞ. The pulse parameters are chosen as experimen-
tally feasible field amplitudes of E0 ¼ 10 MV=cm with
frequency ω0 ¼ 32.9 THz [40].
Driving with this field produces a highly nonlinear

response of these reference systems. A particular manifes-
tation of this is the phenomenon of HHG [5–7], where the
incident laser field produces high-order harmonics in the
current, and drastically alters its electronic properties [41].
This phenomenon has proven to be a useful tool, enabling
molecular orbital tomography [42] and femtosecond res-
olution imaging of strongly correlated systems [39]. HHG

potentially even offers a route to studying dynamics in
the attosecond regime [43], as well as precise chiral
spectroscopy [44].
While the undriven 1D Hubbard model is an insulator

for all U > 0 [45], when a laser pulse is applied, there are
two distinct phases. The driven system may be in a Mott
insulating phase, or—if the incident field is of sufficient
amplitude—it undergoes a dielectric breakdown and
becomes conducting [46]. In the regime of ω0 < U where
the linear response of the system cannot excite electrons
across the gap, the dominant mechanism for this break-
down is nonlinear quantum tunneling, with an associated
critical field amplitude [47]

Eth ∼
Δ
2ξ

; ð15Þ

where Δ is the Mott gap [48], and ξ is the doublon-hole
correlation length [47]. This threshold can be rationalized
as the field strength required to separate a charge pair by a
large enough distance to distinguish them.
In the conducting system, the charge-carriers are

doublons and holes [32], characterized by the doublon
occupation [47]

DðtÞ ¼ 1

L

�X
j

ĉ†j↑ĉj↑ĉ
†
j↓ĉj↓

�
: ð16Þ

If the breakdown threshold is reached, the density of these
charge carriers increases. Figure 1 shows that the numerical
rise in the doublon occupation occurs at roughly time tth,
estimated to be when the incident field first meets the
critical threshold, assuming that ΔðUÞ is not too large for
this to be reached. This threshold time is given by the
solution to

FIG. 1. Doublon occupation for increasing correlation strengths
of U=t0 under the action of the laser. Simulations are distin-
guished by unit increments in U=t0, from U ¼ 0 to U ¼ 10t0.
Black points indicate the time when dielectric breakdown is
predicted to occur, and U ¼ 7t0 is the first plotted value for
which the laser field has an insufficient amplitude for causing a
breakdown.
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Δ
2E0ξ

¼ sin2
�
ω0tth
2N

�
cosðω0tthÞ

þ 1

2N
sin

�
ω0tth
N

�
sinðω0tthÞ; ð17Þ

where analytic expressions in the thermodynamic limit are
used for both Δ [46,49] and ξ [47,50], and exists provided
U ≲ 6.9t0. Beyond this threshold the reference driving
field’s amplitude is insufficient to cause a dielectric break-
down. This breakdown behavior and its effect on DðtÞ can
be seen in Fig. 1.
One consequence of the driving field’s creation of charge

excitations is in the optical response, where higher har-
monics are generated in the HHG spectrum of the dipole
acceleration (dJ=dt). The two contrasting regimes are
shown in Fig. 2. For U ¼ 0 the system is a conductor

and exhibits well-defined peaks at odd harmonics, as
observed in other monoband tightbinding models [51].
In contrast, at U ¼ 7t0 the Mott gap is such that EthðUÞ >
E0 and the system is unable to create charge carriers even
under driving. In the HHG spectrum, the low-order
harmonics are suppressed and effective intraband high-
harmonic generation dominates [52], broadening the spec-
trum, with a peak at N ∼U=ω0 [39].
Material mimicry.—A key target application for tracking

control is the ability to make one material mimic the
spectral behavior of another. To demonstrate this, we use
the tracking strategy to make the U ¼ 0 system mimic the
HHG spectrum of the U ¼ 7t0 system and vice versa. The
observed current will be labeled with a superscript to
indicate the U=t0 value used, e.g., the current expectation
for the U ¼ 0 model is labeled Jð0ÞðtÞ, while for U ¼ 7t0
the current expectation is Jð7ÞðtÞ. Finally, we will label the
expectations generated in the presence of the tracking field
with a subscript T. For example, the current expectation of
theU ¼ 0 system with tracking used to imitate theU ¼ 7t0
system is Jð0ÞT ðtÞ ¼ Jð7ÞðtÞ.
An important caveat here is that directly reproducing the

conducting system’s current in the insulating system is
complicated by the fact that the maximum current a system
may generate is proportional to RðtÞ, which will in general
be much greater in the conducting system. Trying to track
Jð0ÞðtÞ in the insulating system directly violates the tracking
condition given by Eq. (9). To remedy this, the lattice
constant in the tracked system is scaled to a value

að7ÞT ¼ 60að0Þ, such that Eq. (9) is obeyed at all times.
Alternatively, one could simply scale Jð0ÞðtÞ for tracking,
while still retaining the essential spectral features of the
conducting limit, i.e., tightly focused peaks around odd
integer overtones of the driving frequency.
Figure 2 shows the success of the tracking strategy in

spectral mimicry, where each material’s reference HHG
spectra can be tracked in the other. While current tracking is
used to make the one material imitate the dipole accel-
eration spectrum of another, the doublon occupation
(shown in Fig. 3) is not explicitly tracked here, and
provides an alternate characterization of the system state.
This reveals that even while imitating the U ¼ 7t0 current,
the doublon occupation in the U ¼ 0 system indicates that

it remains in the conducting limit, where Dð0Þ ∼Dð0Þ
T . This

is to be expected, as running a small current through a
conducting system would not change its conductive prop-
erty. However, in the Mott insulating U ¼ 7t0 system, a
more dramatic change has occurred between the reference
and tracked systems in order to mimic the spectrum of the
U ¼ 0 conducting system. The tracking system must
exceed the dielectric breakdown threshold given by
Eq. (15) in order to ensure enough mobile charge carriers

to generate sufficient current. The result of this is that Dð7Þ
T

exhibits a rise in doublon density characteristic of this

FIG. 2. Using tracking, it is possible to make the HHG spectra
of one system mimic the other. Here tracking has been imple-
mented to swap the optical characteristics of two systems, i.e.,

Jð0ÞT ðtÞ ¼ Jð7ÞðtÞ and Jð7ÞT ðtÞ ¼ Jð0ÞðtÞ. The top section shows the
original and tracked control fields and currents in the time
domain, while the bottom section demonstrates the strategy’s
success in mimicking spectra.
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dielectric breakdown. Importantly, the same qualitative
behavior also occurs when one instead chooses to scale
the target current JsðtÞ ¼ kJTðtÞ rather than the lattice
constant a. This breakdown is confirmed by calculation of

the time at which Φð7Þ
T ðtÞ exceeds the threshold associated

with U ¼ 7t0 and is also shown in Fig. 3.

Enhancing harmonics with arbitrary control.—With the
arbitrary control provided by tracking, it is possible to
address a longstanding goal for the manipulation of
systems exhibiting HHG. Namely, enhancing the yield
of a specific high harmonic [53–55]. In Fig. 4 we show the
result of applying the tracking algorithm to generate a
current that matches a synthetic spectrum where the ninth
harmonic in the spectrum has been boosted to a level
comparable with the first harmonic. The tracking phase
ΦTðtÞ necessary to produce this boosted yield is also shown
at several interaction strengths.
Discussion.—We have demonstrated a strategy for arbi-

trarily manipulating the current, (and therefore HHG
spectra) of a strongly correlated system. Several applica-
tions of this technique were discussed. Tracking control on
many-electron systems provides a route to exerting fine
control over the HHG spectrum of a strongly correlated
system. Previous experiments have been able to effectively
characterize both a THz control field and the optical
spectrum it induces [56], and the experimental feasibility
of the scheme presented here is discussed in Ref. [30]. We
find that it is possible to produce a reasonable approxima-
tion of the control fields using only two additional
frequencies, which in turn capture the essential qualitative
behavior of the tracked currents. While this is encouraging,
it is important to remain aware of the difficulties of long-
term control over transient phenomena, as decoherence and
errors in the initial setup accumulate larger effects over
time. Nevertheless, given the utility of HHG for the
resolution of ultrafast many-body dynamics [39], we
believe the approach presented here provides a potential
route to controlling system dynamics on a subfemtosecond
time scale.
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FIG. 3. The doublon density of the U ¼ 0 (upper plot) and
U ¼ 7t0 (lower plot) systems under the reference HHG field
DðtÞ, or the tracking field to mimic the current of the other system
DTðtÞ. In the U ¼ 0 model, the doublon density is largely
insensitive to the tracking field and resulting change in current,

i.e., Dð0Þ
T ðtÞ ≈Dð0ÞðtÞ. Conversely, at high U=t0, the peak

amplitude of the tracking control field needed to mimic the
spectrum of the U ¼ 0 conducting system is large enough to

cause a dielectric breakdown. This breakdown time for Dð7Þ
T ðtÞ is

calculated via Eq. (15), and demonstrates that tracking the
spectrum of a conductor from the Mott state necessitates a
breakdown of the insulating state as measured by the doublon
occupation.

FIG. 4. Using tracking, it is possible to boost the yield of a
higher (ninth) harmonic by tracking a synthetic spectrum. The
upper panel shows the necessary control-field needed to repro-
duce this current is sensitive to the correlation strength.
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