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We report a precision measurement of the parity-violating asymmetry Apy in the elastic scattering of
longitudinally polarized electrons from 2%Pb. We measure Apy = 550 % 16(stat) &= 8(syst) parts per
billion, leading to an extraction of the neutral weak form factor Fy(Q? = 0.00616 GeV?) =
0.368 4+ 0.013. Combined with our previous measurement, the extracted neutron skin thickness is
R, — R, =02834+0.071 fm. The result also yields the first significant direct measurement of the
interior weak density of 2%Pb: p%, = —0.0796 4 0.0036(exp) =+ 0.0013(theo) fm~> leading to the interior
baryon density pY) = 0.1480 =+ 0.0036(exp) = 0.0013(theo) fm~>. The measurement accurately constrains
the density dependence of the symmetry energy of nuclear matter near saturation density, with implications

for the size and composition of neutron stars.

DOI: 10.1103/PhysRevLett.126.172502

The equation of state (EOS) of nuclear matter [1-5]
underlies the structure and stability of atomic nuclei, the
formation of the elements, whether stars collapse into
neutron stars or black holes, and the structure of neutron
stars themselves. It is remarkable that the physics of
systems that vary in size by 18 orders of magnitude are
governed by the same EOS.

Observed properties of the full range of atomic nuclei,
characterized by a nearly constant central density, provides
critical input to the EOS which is in turn applied to infer the
properties of neutron stars, first discovered by Jocelyn Bell
Burnell [6]. The EOS has been used to rule out the
possibility that the recently observed 2.6 solar mass object
is a neutron star [7,8], and could be used to infer evidence
of new forms of nuclear matter, such as the presence of a
significant nonzero strangeness component in the neutron
star interior [9,10].

Additional constraints to the EOS are obtained from
detailed studies of neutron star properties (such as size,
structure, and cooling). For example, the NICER x-ray
telescope has determined a pulsar radius to better than 10%
[11], and gravitational wave data from LIGO from a
neutron star merger event has constrained neutron star
tidal deformability [12—18].

The extensive data on atomic nuclei used by EOS models
do not yet constrain one critical EOS parameter, namely L,
the density dependence of the symmetry energy. Recent
progress with chiral effective field theory has improved
theoretical constraints on L [19]. A promising avenue to
obtain experimental constraints utilizes the strong correla-
tion between L and the neutron skin thickness in heavy
nuclei R, — R o that is the difference between the rms radii
of the neutron and proton distributions. Precise data on R,
are available but numerous experimental methods to
determine R,, suffer from uncontrolled uncertainties due
to hadron dynamics [5].

A more accurately interpretable method is to measure the
neutral weak form factor Fy in elastic electron-2%Pb
scattering, exploiting the significantly larger coupling of
the Z° boson to neutrons compared to protons [20,21] to
achieve an accurate R, extraction. Such measurements can
provide insights into the dependence of the symmetry

energy on three-nucleon interactions [22] and its role in
relativistic heavy-ion collisions [23]. Weak form factors of
heavy nuclei lead to a more direct extraction of the nuclear
central density, which is governed by multinucleon inter-
actions [24] and may ultimately bridge to quantum
chromodynamics [25]. Well-determined nuclear weak form
factors can improve the sensitivity of dark matter searches
[26] and tests of neutrino-quark neutral current couplings
via measurements of coherent elastic neutrino-nuclear
scattering [27].

A precise Fy extraction can be accomplished by
measuring the parity-violating asymmetry Apy in longitu-
dinally polarized elastic electron scattering off 2*®Pb nuclei:

A :O-R_GL%GFQ2|QW|FW(Q2) (1)
Y 42maZ Fa(Q*)'

where o; (o) is the cross section for the scattering of left
(right) handed electrons from 2®Pb, G is the Fermi coupling
constant, F, is the charge form factor [28], and Qy, is the
weak charge of 2%Pb. The practical application of this
formula requires the inclusion of Coulomb distortions [29]
and experimental parameter optimization such that a single
kinematic point yields a precise R,, determination [21]. The
first measurement of AT* for 2°8Pb was published in 2012
[30] (PREX-1); here we report a new result (PREX-2) with
greatly improved precision.

The measurement technique [31] is driven by the
requirement to measure a small asymmetry, and conse-
quently the need to measure a high scattered electron flux.
At the optimized kinematic point, Apy is on the level of half
a part per million. Elastically scattered electrons are
isolated by a magnetic spectrometer and the high (multi-
GHz) rates are measured through analog integration of
detector signals. Apy™ is the fractional change in detected
signal between right- and left-handed electrons, repeatedly
measured in short time periods using a rapid helicity flip.

The data measuring Apy® totaled 114 Coulombs of
charge from a 953 MeV electron beam on a diamond-
lead-diamond sandwich target at an average current of
70 pA in experimental Hall A [32] at Thomas Jefferson
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National Accelerator Facility (JLab). The average thick-
nesses of the diamond and lead foils, each known
to better than 5% accuracy, were 90 mg/cm’ and
625 mg/cm?, respectively. The scattered electrons that
passed the acceptance-defining collimator at the entrance
of each High Resolution Spectrometer (HRS) [32] were
momentum analyzed and focused by three magnetic
quadrupoles and a dipole. Both the left and right HRS
were equipped with identical detector packages and were
positioned at their most forward angle ~12.5°. A septum
magnet pair extended the reach of the spectrometers to the
average desired laboratory scattering angle of ~5°. The
spectrometer achieved a momentum resolution of 0.6 MeV,
ensuring that the detector intercepted only elastic events;
the closest inelastic state at 2.6 MeV was ~0.5 MeV from
the detector edge. The independent measurements in the
left and right HRS were combined with equal statistical
weight.

Individual asymmetries are formed from 33 ms quartet or
octet sequences of beam helicity, depending on the fre-
quency of helicity reversal (either 120 or 240 Hz) created
by a Pockels cell (PC) [33] in the polarized source. The first
helicity sign in the sequence was chosen pseudorandomly,
with the rest determined to form either a + — —+ or + —
—+ — + +— flip sequence or its complement, ensuring
cancellation of 60 Hz power line noise. A blinding offset
was added to each sequence asymmetry during decoding
and maintained throughout the analysis. The dataset con-
tained a little over 50 million such sequences.

Approximately every eight hours, a half-wave plate
(HWP) in the injector laser setup was toggled IN or
OUT, facilitating a complete asymmetry sign reversal with
no other change. The data taken between each such reversal
were combined into “slugs.” Furthermore, spin manipula-
tion in the injector beam line (using the “double-Wien”
[33]) was changed twice during the run to add a 180°
precession, thereby flipping the measured asymmetry sign.
With approximately equal amounts of data at each HWP/
Wien state combination, these slow reversals provided
critical additional cancellation of potential sources of
spurious asymmetries.

The scattering angle was calibrated using the difference in
nuclear recoil between scattering from hydrogen and heavier
nuclei in a water target, with tracks measured using the
vertical drift chambers in the HRS [32]. The rate-averaged
scattering angle was determined to be 4.71 £+ 0.02° and
4.67 £ 0.02° for the left and right HRS, respectively, with a
four-momentum transfer squared, averaged over the com-
bined acceptance, of (Q?) = 0.00616 & 0.00005 GeV?.

The beam current was monitored with three radio
frequency (rf) cavity beam current monitors (BCMs).
The integrated charge asymmetry between positive and
negative helicity bunches was determined every 7.5 sec-
onds, and fed back to a control system which used the
injector PC to minimize this quantity. The cumulative

TABLE 1. Corrections and systematic uncertainties to extract
AP listed on the bottom row with its statistical uncertainty.

Correction Absolute [ppb] Relative [%]
Beam asymmetry —60.4 + 3.0 11.0+ 0.5
Charge correction 20.7+0.2 3.8+0.0
Beam polarization 56.8 5.2 103+ 1.0
Target diamond foils 0714 0.1£0.3
Spectrometer rescattering 0.0+0.1 0.0+0.0
Inelastic contributions 0.0+0.1 0.0+0.0
Transverse asymmetry 00=£03 0.0=£0.1
Detector nonlinearity 0.0£2.7 0.0£0.5
Angle determination 0.0+35 0.0£0.6
Acceptance function 0.0+29 0.0+0.5
Total correction 17.7+8.2 32+1.5
ApRY™ and statistical error 550+ 16 100.0 £2.9

charge correction was 20.7 = 0.2 parts per billion (ppb).
This was cross-checked to be consistent among the
multiple BCMs, with a sensitivity significantly better than
the ultimate Apy™ statistical uncertainty. The beam trajec-
tory throughout the accelerator complex was monitored
using rf beam position monitors. Careful configuration of
the polarized electron source ensured that the helicity-
correlated difference in the electron beam trajectory was
small: %1 nm in beam position and ~1 ppb in beam energy
averaged over the entire dataset.

The scattered electrons were detected by two identical
thin fused-silica tiles (16 x 3.5 x 0.5 cm?) in each spec-
trometer. With the long side of each tile oriented along the
dispersive direction, approximately 7 cm was used to
sample the elastically scattered electrons. The rest of the
tile was a light guide to the photomultiplier tube (PMT) on
the high-energy side of the elastic peak and contributed
negligible background rate. The large scattered flux
(~2.2 GHz per arm) made it impractical to count individual
pulses; the integrated PMT response over each helicity
period provided an adequate relative measure. The PMT
and beam monitor signals were integrated and digitized by
18-bit sampling ADCs originally built for the Qweak
experiment [34].

The effects of beam trajectory and energy fluctuations on
the detected flux were calibrated and checked using two
techniques: regression over the intrinsic jitter in the beam
parameters, and a dedicated, intermittent system which
employed air-core dipole magnets and an rf acceleration
cavity to create 15 Hz modulations of beam trajectory or
energy. The dedicated calibration system was activated
several times an hour throughout the data collection period.

Table I lists the necessary corrections and their system-
atic uncertainties to extract Apy*® = 550 ppb from the full
dataset of 96 slugs.

The beam asymmetry correction accounts for helicity-
correlated fluctuations in the beam trajectory (position and
angle in two transverse coordinates) and energy. A set of
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FIG. 1. Distribution of 30 million asymmetries measured over

1/30 s sequences formed with 240 Hz helicity flips. Only data
taken with a beam current near to 70 pA is included.

six beam position monitors measured the transverse coor-
dinates at locations of varying energy dispersion. The
correction was calculated using a regression analysis over
all measured coordinates, constrained to be consistent with
the dedicated modulation data, thus optimizing precision
while accounting for instrumental correlated noise and
resolution. The corrections were consistent throughout the
dataset, and for the grand average, with the alternative (but
less precise) methods based on only regression or direct
modulation-calibrated sensitivities.

The asymmetry data are free from any unanticipated bias
as can be seen in Fig. 1, which shows the distribution after
beam corrections of the sequence asymmetry for data
collected with 240 Hz flip rate and 70 A beam current
(~62% of the statistics). The remarkably high level of
agreement between the data and the normal distribution fit
over five orders of magnitude is achieved without the
application of a single helicity-correlated data quality cut
on any measured parameter.

The cumulative beam asymmetry correction was
—60.4 £ 3.0 ppb, where the systematic uncertainty results
from assuming a 3% uncorrelated uncertainty in the
correction from each of the five beam parameters, con-
sistent with cross-checks among various regression and
beam-modulation analyses.

The beam-corrected asymmetry data are dominated by
statistical fluctuations around a single mean, as demon-
strated in Fig. 2. This plot shows the deviations from the
grand average asymmetry for all 5084 =5-minute data
segments, with each entry normalized to its own statistical
uncertainty of =1 ppm. The data describe a normal
distribution with unit variance and zero mean, as expected.
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FIG. 2. Distribution of normalized deviations from the average
(blue) for ~5-minute asymmetry datasets after beam corrections,
compared to a Gaussian fit (red).

The beam-corrected asymmetry A.,, must be further
corrected for the beam polarization (P,), and the

background dilutions (f;) and asymmetries (A;) to obtain

meas.
PV -

lAcorr - PbZiAifi
1= '

The degree of longitudinal polarization P, of the
electron beam was maximized at the beginning of data
taking using the injector Mott polarimeter [35]. It was
periodically measured just in front of the target using a
Mgller polarimeter [32,36] in dedicated low current runs
that were interspersed throughout the data taking period.
The average beam polarization result was (89.7 + 0.8)%.
The determination of the polarimeter target foil polarization
was the largest contribution to the uncertainty (0.6%).

The main background corrections are also listed in
Table I. The largest dilution (f- = 6.3 £0.5%) was due
to the diamond foils, though the correction was small: Apy
for ’C and 2%®Pb are numerically similar. The effect of a
tiny amount of scattering from magnetized pole tips in the
spectrometer was found to be negligible. A 0.26 ppb
systematic uncertainty accounted for a possible imperfect
cancellation from a residual transverse electron beam
polarization component; no correction was applied.

The linear response of the integrated detector signal was
demonstrated to be better than 0.5% in a bench test using a
calibration system with multiple light sources. The linearity
of the detector response was also monitored throughout the
data taking period by comparison with BCM measurements
of beam current fluctuations. The resulting systematic
uncertainty was 2.7 ppb; no correction was applied.

Ameas _
PV Pb

(2)
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TABLE II. Apg* for different HWP-Wien state combinations.
HWP/Wien Ao Sign AR [ppb] x> #slugs
IN/Left - 540.7+29.9 46.9 27
OUT/Left + 598.8 +29.1 31.6 29
IN/Right + 506.2 £34.1 18.3 19
OUT/Right - 536.4 £ 37.7 16.0 21

As a final sensitive test for unknown systematic effects,
the data were separated into four time periods depending on
the sign of the HWP and double-Wien states. The results
are statistically consistent, as summarized in Table II. The
x> for averaging over the slugs in each configuration
is shown.

For a direct comparison of the measurement to theoreti-
cal predictions one must convolve the predicted asymmetry
variation with the acceptance of the spectrometers:

gy = [do sinHA(z)j—ge(H) ’ o)

[ d0sin 049 (0)

where do/dQ is the differential cross section and A(6) is
the modeled parity violating asymmetry as a function of
scattering angle. The acceptance function e(6) is defined as
the relative probability for an elastically scattered electron
to make it to the detector [37]. The systematic uncertainty
in €(0) was determined using a simulation that took into
account initial and final state radiation and multiple
scattering.

Our final results for Apy* and Fy, with the acceptance
described by €() and (Q?) = 0.00616 GeV? are

APS® = 550 + 16 (stat) £ 8 (syst) ppb
Fy((0%) = 0.368 + 0.013 (exp) £ 0.001 (theo),

where the experimental uncertainty in Fy includes both
statistical and systematic contributions.

6.1 _
- 208 m
n Pb Jos
61— ]
5 1 -
— o — 0.4
£ 59— ] £
M- - d
=1 : : mn.
& =aF —Jo3 &
5.8 193 o=
" C ]
] C . £
B 57| —02
g a ]
X r ] S
8 sef o1 &
s - ] §
[ charge radius R =5.503 fm ]
55 E PREX-2 N 0
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520 540 560 580 600 620
PV asymmetry APV [ppb ]
FIG. 3. Extraction of the weak radius (left vertical axis) or

neutron skin (right vertical axis) for the 2°°Pb nucleus. R, [46] is
shown for comparison.

The correlation between Apy and the 2%Pb weak radius
Ry 1is obtained by plotting the predictions for these two
quantities from a sampling of theoretical calculations
[8,40—45], as shown in Fig. 3, along with the green band
highlighting Apy* and its 1-6 experimental uncertainty.

Single nucleon weak form factors are folded with point
nucleon radial densities to arrive at the weak density
distribution py, (1), using Qy = —117.9 £ 0.3 which incor-
porates one-loop radiative corrections including y-Z box
contributions [47-50] as an overall constraint. The corre-
lation slope in Fig. 3 is determined by fitting py (r) as a
two-parameter Fermi function over a large variety of
relativistic and nonrelativistic density functional models,
determining for each model a size consistent with Ry, and a
surface thickness a. This also determines the small model
uncertainty, shown in Fig. 3 (dashed red lines), correspond-
ing to the range of a [24,37,51].

Projecting to the model correlation to determine the
weak radius or alternatively the neutron skin (left and right
vertical axes, respectively), the PREX-2 results are

Ry = 5.795 £ 0.082(exp) £ 0.013(theo) fm
R, —R, =0.278 £ 0.078(exp) £ 0.012(theo) fm.

The normalization constant in the Fermi-function form
of pw(r) used to extract Ry is a measure of the 2°%Pb
interior weak density [37]:

ph = —0.0798 £ 0.0038 (exp) & 0.0013 (theo) fm~>.

Combined with the well-measured interior charge density,
the interior baryon density determined solely from the
PREX-2 data is p) = 0.1482 + 0.0040 fm~> (combining
experimental and theoretical uncertainties).

This result is consistent with the results from the PREX-1
measurement, which found R, —R, =0.30+0.18 fm
[52]. Table Il summarizes nuclear properties of 2*Pb from
the combined PREX-1 and PREX-2 results, including a 40
determination of the neutron skin.

Exploiting the strong correlation between R, — R, and the
density dependence of the symmetry energy L, the PREX
result implies a stiff symmetry energy (L = 106 =37 MeV
[53]), with important implications for critical neutron star
observables. Figure 4 shows the inferred radial dependence

TABLE III. PREX-1 and -2 combined experimental results for
208ph, Uncertainties include both experimental and theoretical
contributions.

Value

5.800 £+ 0.075 fm
—-0.0796 +0.0038 fm~>
0.1480 + 0.0038 fm~3

0.283 £0.071 fm

208phy Parameter

Weak radius (Ryy)

Interior weak density (pj)
Interior baryon density (pf)
Neutron skin (R, — R),)
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FIG. 4. ?%%Pb weak and baryon densities from the combined

PREX datasets, with uncertainties shaded. The charge density
[46] is also shown.

of the 28Pb charge, weak and total baryon densities together
with their uncertainty bands. The precise 2.5% determination
of p? for 2%Pb will facilitate a sensitive examination of its
close relationship to the nuclear saturation density [24].

After the 2°%Pb run, data were also collected to measure
Amess for “Ca (CREX) [54]. The improved systematic
control of helicity correlated beam asymmetries and several
other PREX experimental innovations will inform the
design of future projects MOLLER [55] and SoLID [56]
at JLab measuring fundamental electroweak couplings, as
well as a more precise °*Pb radius experimental proposal at
Mainz [5,57].

We thank the entire staff of JLab for their efforts to
develop and maintain the polarized beam and the exper-
imental apparatus, and acknowledge the support of the U.S.
Department of Energy, the National Science Foundation
and NSERC (Canada). This material is based upon the
work supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics Contract No. DE-
AC05-060R23177.

*paschke@virginia.edu

[1] S.J. Novario, G. Hagen, G. R. Jansen, and T. Papenbrock,
Charge radii of exotic neon and magnesium isotopes, Phys.
Rev. C 102, 051303(R) (2020).

[2] H. Shen, F. Ji, J. Hu, and K. Sumiyoshi, Effects of symmetry
energy on equation of state for simulations of core-collapse
supernovae and neutron-star mergers, Astrophys. J. 891,
148 (2020).

[3] C. Horowitz, Neutron rich matter in the laboratory and in the
heavens after GW170817, Ann. Phys. (Amsterdam) 411,
167992 (2019).

[4] J.-B. Wei, J.-J. Lu, G. Burgio, Z. Li, and H.-J. Schulze, Are
nuclear matter properties correlated to neutron star observ-
ables? Eur. Phys. J. A 56, 63 (2020).

[5] M. Thiel, C. Sfienti, J. Piekarewicz, C. Horowitz, and M.
Vanderhaeghen, Neutron skins of atomic nuclei: Per aspera
ad astra, J. Phys. G 46, 093003 (2019).

[6] A. Hewish, S. Bell, J. Pilkington, P. Scott, and R. Collins,
Observation of a rapidly pulsating radio source, Nature
(London) 217, 709 (1968).

[7] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW190814: Gravitational waves from the coalescence of a
23 solar mass black hole with a 2.6 solar mass compact
object, Astrophys. J. Lett. 896, L44 (2020).

[8] E.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, and B. Reed,
GW190814: Impact of a 2.6 solar mass neutron star on
nucleonic equations of state, Phys. Rev. C 102, 065805 (2020).

[9] L. Tolos and L. Fabbietti, Strangeness in nuclei and neutron
stars, Prog. Part. Nucl. Phys. 112, 103770 (2020).

[10] M. Fortin, A.R. Raduta, S. Avancini, and C. Providéncia,
Relativistic hypernuclear compact stars with calibrated
equations of state, Phys. Rev. D 101, 034017 (2020).

[11] T.E. Riley et al., A NICER view of PSR J0030 + 0451:
Millisecond pulsar parameter estimation, Astrophys. J. Lett.
887, L21 (2019).

[12] K. Chatziioannou, Neutron star tidal deformability and
equation of state constraints, Gen. Relativ. Gravit. 52,
109 (2020).

[13] Y. Zhang, M. Liu, C.-J. Xia, Z. Li, and S.K. Biswal,
Constraints on the symmetry energy and its associated
parameters from nuclei to neutron stars, Phys. Rev. C
101, 034303 (2020).

[14] H. Giiven, K. Bozkurt, E. Khan, and J. Margueron, Multi-
messenger and multiphysics Bayesian inference for the
GW170817 binary neutron star merger, Phys. Rev. C
102, 015805 (2020).

[15] L. Baiotti, Gravitational waves from neutron star mergers
and their relation to the nuclear equation of state, Prog. Part.
Nucl. Phys. 109, 103714 (2019).

[16] J. Piekarewicz and F. Fattoyev, Neutron rich matter in
heaven and on Earth, Phys. Today 72, 7, 30 (2019).

[17] M. Tsang, W. Lynch, P. Danielewicz, and C. Tsang,
Symmetry energy constraints from GW170817 and labo-
ratory experiments, Phys. Lett. B 795, 533 (2019).

[18] M. Fasano, T. Abdelsalhin, A. Maselli, and V. Ferrari,
Constraining the Neutron Star Equation of State Using
Multiband Independent Measurements of Radii and Tidal
Deformabilities, Phys. Rev. Lett. 123, 141101 (2019).

[19] C. Drischler, R.J. Furnstahl, J. A. Melendez, and D.R.
Phillips, How Well Do We Know the Neutron-Matter
Equation of State at the Densities Inside Neutron Stars?
A Bayesian Approach with Correlated Uncertainties, Phys.
Rev. Lett. 125, 202702 (2020).

[20] T. Donnelly, J. Dubach, and I. Sick, Isospin dependences in
parity violating electron scattering, Nucl. Phys. A503, 589
(1989).

[21] C.J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels,
Parity violating measurements of neutron densities, Phys.
Rev. C 63, 025501 (2001).

[22] W. Bentz and I. C. Cloét, Symmetry energy of nuclear matter
and isovector three-particle interactions, arXiv:2004.11605.

[23] H. Li, H.-j. Xu, Y. Zhou, X. Wang, J. Zhao, L.-W. Chen, and
F. Wang, Probing the Neutron Skin with Ultrarelativistic
Isobaric Collisions, Phys. Rev. Lett. 125, 222301 (2020).

172502-6


https://doi.org/10.1103/PhysRevC.102.051303
https://doi.org/10.1103/PhysRevC.102.051303
https://doi.org/10.3847/1538-4357/ab72fd
https://doi.org/10.3847/1538-4357/ab72fd
https://doi.org/10.1016/j.aop.2019.167992
https://doi.org/10.1016/j.aop.2019.167992
https://doi.org/10.1140/epja/s10050-020-00058-3
https://doi.org/10.1088/1361-6471/ab2c6d
https://doi.org/10.1038/217709a0
https://doi.org/10.1038/217709a0
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevC.102.065805
https://doi.org/10.1016/j.ppnp.2020.103770
https://doi.org/10.1103/PhysRevD.101.034017
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.1007/s10714-020-02754-3
https://doi.org/10.1007/s10714-020-02754-3
https://doi.org/10.1103/PhysRevC.101.034303
https://doi.org/10.1103/PhysRevC.101.034303
https://doi.org/10.1103/PhysRevC.102.015805
https://doi.org/10.1103/PhysRevC.102.015805
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.1063/PT.3.4247
https://doi.org/10.1016/j.physletb.2019.06.059
https://doi.org/10.1103/PhysRevLett.123.141101
https://doi.org/10.1103/PhysRevLett.125.202702
https://doi.org/10.1103/PhysRevLett.125.202702
https://doi.org/10.1016/0375-9474(89)90432-6
https://doi.org/10.1016/0375-9474(89)90432-6
https://doi.org/10.1103/PhysRevC.63.025501
https://doi.org/10.1103/PhysRevC.63.025501
https://arXiv.org/abs/2004.11605
https://doi.org/10.1103/PhysRevLett.125.222301

PHYSICAL REVIEW LETTERS 126, 172502 (2021)

[24] C.J. Horowitz, J. Piekarewicz, and B. Reed, Insights into
nuclear saturation density from parity violating electron
scattering, Phys. Rev. C 102, 044321 (2020).

[25] C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A.
Nicholson, P. Vranas, and A. Walker-Loud, Towards
grounding nuclear physics in QCD, arXiv:1910.07961.

[26] J. Yang, J. A. Hernandez, and J. Piekarewicz, Electroweak
probes of ground state densities, Phys. Rev. C 100, 054301
(2019).

[27] D. Akimov et al. (COHERENT Collaboration), Observation
of coherent elastic neutrino-nucleus scattering, Science 357,
1123 (2017).

[28] T. de Forest, Jr. and J. Walecka, Electron scattering and
nuclear structure, Adv. Phys. 15, 1 (1966).

[29] C.J. Horowitz, Parity violating elastic electron scattering
and Coulomb distortions, Phys. Rev. C 57, 3430 (1998).

[30] S. Abrahamyan et al., Measurement of the Neutron Radius
of 208Pb Through Parity-Violation in Electron Scattering,
Phys. Rev. Lett. 108, 112502 (2012).

[31] K. A. Aniol et al. (HAPPEX Collaboration), Parity violating
electroweak asymmetry in polarized-e p scattering, Phys.
Rev. C 69, 065501 (2004).

[32] J. Alcorn et al., Basic instrumentation for Hall A at Jefferson
Lab, Nucl. Instrum. Methods Phys. Res., Sect. A 522, 294
(2004).

[33] C.K. Sinclair, P.A. Adderley, B.M. Dunham, J.C.
Hansknecht, P. Hartmann, M. Poelker, J.S. Price, P. M.
Rutt, W.J. Schneider, and M. Steigerwald, Development of
a high average current polarized electron source with long
cathode operational lifetime, Phys. Rev. ST Accel. Beams
10, 023501 (2007).

[34] T. Allison et al., The Qweak experimental apparatus, Nucl.
Instrum. Methods Phys. Res., Sect. A 781, 105 (2015).

[35] J. M. Grames et al., High precision 5 MeV Mott polarimeter,
Phys. Rev. C 102, 015501 (2020).

[36] K. Aulenbacher, E. Chudakov, D. Gaskell, J. Grames, and
K. D. Paschke, Precision electron beam polarimetry for next
generation nuclear physics experiments, Int. J. Mod. Phys. E
27, 1830004 (2018).

[37] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.172502 for the
acceptance function and further details on the Fermi-
function fit, which include Refs. [38,39].

[38] D. W.L. Sprung and J. Martorell, The symmetrized fermi
function and its transforms, J. Phys. A 30, 6525 (1997).

[39] J. Piekarewicz, A.R. Linero, P. Giuliani, and E. Chicken,
Power of two: Assessing the impact of a second measure-
ment of the weak-charge form factor of 2%Pb, Phys. Rev. C
94, 034316 (2016).

[40] M. Beiner, H. Flocard, N. van Giai, and P. Quentin, Nuclear
ground state properties and self-consistent calculations with
the Skyrme interactions: 1. Spherical description, Nucl.
Phys. A238, 29 (1975).

[41] B. G. Todd-Rutel and J. Piekarewicz, Neutron-Rich Nuclei
and Neutron Stars: A New Accurately Calibrated Interaction
for the Study of Neutron-Rich Matter, Phys. Rev. Lett. 95,
122501 (2005).

[42] F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, and G. Shen,
Relativistic effective interaction for nuclei, giant resonances,
and neutron stars, Phys. Rev. C 82, 055803 (2010).

[43] G. A. Lalazissis, J. Konig, and P. Ring, A new parametriza-
tion for the Lagrangian density of relativistic mean field
theory, Phys. Rev. C 55, 540 (1997).

[44] F.J. Fattoyev and J. Piekarewicz, Has a Thick Neutron Skin
in 28Ph Been Ruled Out? Phys. Rev. Lett. 111, 162501
(2013).

[45] E.Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,
A Skyrme parametrization from subnuclear to neutron star
densities. 2. Nuclei far from stablities, Nucl. Phys. A635, 231
(1998); Erratum, Nucl. Phys. A643, 441 (1998).

[46] H. De Vries, C. De Jager, and C. De Vries, Nuclear charge-
density-distribution parameters from elastic electron scatter-
ing, At. Data Nucl. Data Tables 36, 495 (1987).

[47] J. Erler and S. Su, The weak neutral current, Prog. Part.
Nucl. Phys. 71, 119 (2013).

[48] M. Gorchtein and C. J. Horowitz, Dispersion Gamma Z-Box
Correction to the Weak Charge of the Proton, Phys. Rev.
Lett. 102, 091806 (2009).

[49] M. Gorchtein, C.J. Horowitz, and M.J. Ramsey-Musolf,
Model-dependence of the yZ dispersion correction to the
parity-violating asymmetry in elastic ep scattering, Phys.
Rev. C 84, 015502 (2011).

[50] J. Erler and M. Gorchtein (private communication).

[51] B.T. Reed, Z. Jaffe, C.J. Horowitz, and C. Sfienti, Meas-
uring the surface thickness of the weak charge density of
nuclei, Phys. Rev. C 102, 064308 (2020).

[52] C.J. Horowitz et al., Weak charge form factor and radius of
208pb through parity violation in electron scattering, Phys.
Rev. C 85, 032501(R) (2012).

[53] B.T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz,
Following Letter, Implications of PREX-II on the equation of
state of neutron-rich matter, Phys. Rev. Lett. 126, 172503
(2021).

[54] S. Riordan et al. (CREX Collaboration), CREX: Parity
violating measurement of the weak charge distribution of
48Ca to 0.02 fm accuracy, Technical Report No. JLAB-PR-
40-12-004, TINAF, 2013.

[55] J. Benesch et al. (MOLLER Collaboration), The MOLLER
Experiment: An ultra-precise measurement of the weak
mixing angle using Mgller scattering, arXiv:1411.4088.

[56] P. Souder et al. (SoLID Collaboration), Precision measure-
ment of parity-violation in deep inelastic scattering over a
broad kinematic range, Technical Report No. JLAB-PR-09-
012-pvdis, TINAF, 2008.

[57] D. Becker et al., The P2 experiment, Eur. Phys. J. A 54,208
(2018).

172502-7


https://doi.org/10.1103/PhysRevC.102.044321
https://arXiv.org/abs/1910.07961
https://doi.org/10.1103/PhysRevC.100.054301
https://doi.org/10.1103/PhysRevC.100.054301
https://doi.org/10.1126/science.aao0990
https://doi.org/10.1126/science.aao0990
https://doi.org/10.1080/00018736600101254
https://doi.org/10.1103/PhysRevC.57.3430
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevC.69.065501
https://doi.org/10.1103/PhysRevC.69.065501
https://doi.org/10.1016/j.nima.2003.11.415
https://doi.org/10.1016/j.nima.2003.11.415
https://doi.org/10.1103/PhysRevSTAB.10.023501
https://doi.org/10.1103/PhysRevSTAB.10.023501
https://doi.org/10.1016/j.nima.2015.01.023
https://doi.org/10.1016/j.nima.2015.01.023
https://doi.org/10.1103/PhysRevC.102.015501
https://doi.org/10.1142/S0218301318300047
https://doi.org/10.1142/S0218301318300047
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.172502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.172502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.172502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.172502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.172502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.172502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.172502
https://doi.org/10.1088/0305-4470/30/18/026
https://doi.org/10.1103/PhysRevC.94.034316
https://doi.org/10.1103/PhysRevC.94.034316
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevLett.111.162501
https://doi.org/10.1103/PhysRevLett.111.162501
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1016/S0375-9474(98)00570-3
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/j.ppnp.2013.03.004
https://doi.org/10.1016/j.ppnp.2013.03.004
https://doi.org/10.1103/PhysRevLett.102.091806
https://doi.org/10.1103/PhysRevLett.102.091806
https://doi.org/10.1103/PhysRevC.84.015502
https://doi.org/10.1103/PhysRevC.84.015502
https://doi.org/10.1103/PhysRevC.102.064308
https://doi.org/10.1103/PhysRevC.85.032501
https://doi.org/10.1103/PhysRevC.85.032501
https://doi.org/10.1103/PhysRevLett.126.172503
https://doi.org/10.1103/PhysRevLett.126.172503
https://arXiv.org/abs/1411.4088
https://doi.org/10.1140/epja/i2018-12611-6
https://doi.org/10.1140/epja/i2018-12611-6

