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In this Letter, we propose a holographic duality for classical gravity on a three-dimensional de Sitter
space. We first show that a pair of SU(2) Chern-Simons gauge theories reproduces the classical partition
function of Einstein gravity on a Euclidean de Sitter space, namely S, when we take the limit where the
level k approaches —2. This implies that the conformal field theory (CFT) dual of gravity on a de Sitter
space at the leading semiclassical order is given by an SU(2) Wess-Zumino-Witten model in the large
central charge limit k — —2. We give another evidence for this in the light of known holography for coset
CFTs. We also present a higher spin gravity extension of our duality.

DOI: 10.1103/PhysRevLett.129.041601

Introduction.—Holography has been one of the most
promising ideas that provide nonperturbative formulations of
quantum gravity [1]. This approach has been extremely
successful for holography in anti-de Sitter (AdS) space,
namely the AdS/CFT correspondence [2]. On the other
hand, to understand how the present Universe has been
created, we need a complete formulation of quantum gravity
in de Sitter (dS) space, instead of AdS. Nevertheless, we are
still lacking understanding of holography in dS space, so-
called dS/CFT correspondence [3-5] (see also Refs. [6-8]),
though there has been a concrete proposal in four-dimen-
sional higher spin gravity [9] and interesting recent progress
in the light of the dS/dS correspondence [10-13], holo-
graphic entanglement entropy [14-17], and holography in
dS static patch [18,19]. Especially, we are missing the dual
conformal field theory (CFT) which lives on the past-future
boundary of de Sitter space in Einstein gravity. This Letter is
aimed at presenting a solution to this fundamental problem
for three-dimensional dS.

The three-dimensional de Sitter space is special in that
it is described by a Chern-Simons gauge theory [20]
and that it is expected to be dual to a two-dimensional
CFT assuming the standard idea of dS/CFT. The Chern-
Simons description of gravity on S*, which is an Euclidean
counterpart of de Sitter space, is described by a pair of
SU(2) Chern-Simons gauge theories [20]. Moreover, it is
well known that an SU(2) Chern-Simons theory is
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equivalent to conformal blocks of the SU(2) Wess-
Zumino-Witten (WZW) model [21], which has often been
regarded as an example of holography. By combining these
observations, it is natural to suspect that the gravity on S*
and its Lorentzian continuation, i.e., de Sitter space, is dual
to the SU(2) WZW model or its related cousins.

After a little consideration, however, we are immediately
led to a puzzle as follows. Since the classical limit of the
Einstein gravity on S3 or de Sitter space is given by the
large level limit k — oo (see Refs. [22-28] for various
studies of this limit), the central charge ¢ of the dual SU(2)
WZW model at level k approaches to the finite value ¢ =
3k/(k+2) — 3 in this limit. On the other hand, the
standard idea of dS/CFT [3,5] tells us that the classical
gravity is dual to the large central charge limit of a CFT.
In what follows, as the main result in this Letter, we will
show that, in the large central charge limit k — —2 of the
SU(2) WZW model, the dual Chern-Simons gravity is able
to reproduce the results of classical gravity on S°. By
combining this observation with a de Sitter generalization
of the conjectured higher spin AdS/CFT duality [29], we
will resolve the above puzzle and obtain a concrete
dS/CFT in the three-dimensional case.

Chern-Simons gravity on S°.—The Einstein gravity on
S? is equivalent to two copies of classical SU(2) Chern-
Simons gauge theories, whose action is given by

Icsg = Ics[A] = Ics[A],

ICS[A]:—%/MTr[A/\dA—i—gA/\A/\A], (1)

where A and A are the one-form SU(2) gauge potentials. The
level k is inversely proportional to the three-dimensional
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Newton constant Gy. The partition function of a single
SU(2) Chern-Simons theory with a Wilson loop in the spin-j
representation (denoted by R)), is given by SE-) [21], where S
is the S matrix of modular transformation of SU(2) WZW
model,

S= ,/kizsin {é(zﬁl)(zlﬂ) )

Therefore, the total partition function of the Chern-Simons
theory (1) for the three-dimensional gravity is evaluated as

ZCSG[§3’ Rj] = |5<€|27 (3)

where we assumed that the Wilson loop is symmetric
between the two SU(2) gauge groups.

Moreover, when two Wilson loops, each in the R; and R,
representation, are linked, the partition function of the
Chern-Simons gravity reads

Zes[S' LR Ry)] =[S (4)

On the other hand, when two Wilson loops are not linked
with each other, we obtain

2

S6Sh
St

Zcsg[S* R R =

(5)

Note that the above partition functions are for the full
quantum Chern-Simons theory, and thus we expect they
include quantum gravity effects, which will be suppressed
in the large k limit.

Holographic limit for dS/CFT.—Motivated by the
standard version of dS/CFT correspondence in [5], where
Einstein gravity limit of three-dimensional de Sitter space is
given by the large central charge limit ¢ — ico, we argue
the following relation between the SU(2) WZW model and
the gravity on S*:

C:i: icl9
k+2 '
i1
. :J(]+ ): ih(-g), (6)

Tk+2 /

where ¢ and h; are, respectively, the central charge and the
chiral conformal dimension of a primary field in the SU(2)
WZW model at level k, respectively, while the quantities
c9 and hﬁ-g) are their gravity counterparts and are real
valued. In the gravity, the radius of S3, written as L, is
related to the central charge via the de Sitter counterpart of
the well-known relation [5,30]

3L

(9 = =
< T 26y

(7)

The energy E; in this gravity dual to the Wilson loop R; is
simply related to the conformal dimension via

E, =—'-. (8)

In the semiclassical gravity regime L/Gy > 1, we
consider k — —2 limit, which is more precisely described by

k:-z+ﬁ+o<i>. (9)

) clo)2

In addition it is useful to note

244
1—8GNE]:1— ]

x0) ~ (2j+ 1)% (10)

Therefore, the Chern-Simons partition function on S? with a
single Wilson loop (3) is evaluated as follows (in the
semiclassical limit ¢ > 1):

c9

(9)
c
ZCSG[§3,R/']QECXP[ 3 \/I_SGNEJ:| (11)

Similarly, the partition function (4) on S* with two linked
Wilson loops inserted is estimated by

ZesolS? L(R;. R))]

C(.‘/) wc\Y

(9
zﬁexp[ 3 \/I—SGNEj\/1—8GNE,} (12)

For unlinked two Wilson lines, we obtain from (5),

3 9 zcl9)
Zcsa[S* R;, R} 2EWP[ 3 (v/1—8GyE;
4 \/1=8GrE, - 1)]. (13)

Notice that in the above we have assumed the limit
k — =2, which looks quite different from the semiclassical
limit of the Chern-Simons gauge theory. To see that our
new limit gives a correct answer, we will compare the above
results with those expected from the direct Einstein gravity
calculations in the following.

Gravity on de Sitter space.—The Euclidean de Sitter
black hole solution is given by

2

ds*=L*|(1-8GyE;—r*)de*+ s+r2dg? |,

v

1— SGNEJ —r
(14)

where E; is the energy of an excitation [31]. The black hole

horizon is at r = /1 —8GyE; and the requirement of
smoothness at the horizon determines the periodicity
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2w

V/T-8GyE;

On the other hand, the angular coordinate ¢ obeys the
periodicity ¢ ~ ¢ + 2z and there is a conical singularity at
r = 0. The black hole entropy reads

T~T+

(15)

zcl9)

/T—8GyE;. (16)

It is useful to introduce the coordinate 6 by

r=+/1-8GyE;sin0 (0 3939, (17)

BH —

which leads to the metric

ds* = L*[d6* + (1 — 8GyE;)(cos*0dr* + sin*0dg?)].

(18)
Then we evaluate the gravity action
I = ! / V(R = 2A) (19)
G- 167[GN g ’

where A = 1/L?. This leads to

ﬂC(g)

V1 =8GyE;, (20)

whose semiclassical gravity partition function Zg =
exp [-1;] agrees with the Chern-Simons result (11).
Let us introduce the Cartesian coordinates

X, = cos@cos(\/r———8G_N—E—jT),
X, = cosOsin (/1 — 8GyE 1),
X; = sin@cos (/1 - 8GyE¢),
X, = sin@sin (/1 —8GyE;p). (21)

Then the sphere Y% | (X;)? = L? is described by the metric
(18). The insertion of the single Wilson line R; corresponds
to a deficit angle 6; =2z —2n,/1 —8GyE; at 6 =0,
depicted as the red circle in Fig. 1.

We can realize the second Wilson loop at 6 = z/2
linking with the first one by identifying the coordinate 7 as

2n/1 — E
TNT+”—23G1\’1 (22)

/1—8GyE;

This is depicted as the green circle in Fig. 1, where the
deficit angle 6, = 27 — 27+/1 — 8GyE, is present. Finally,
the gravity action for this geometry is estimated as

IG:—

0=m/2 0=m/2
X3
—
X; @)=
~ 7
paste
0<op<m < ¢ <2mw

FIG. 1. The north (left) and south (right) hemisphere with two
linked Wilson lines (red and green).

zcl9)
3 V1 -8GyE;\/1-8GyE;,  (23)

IG:_

which again reproduces the leading part of the Chern-
Simons result (12) in the semiclassical limit.

Higher spin gravity.—The Chern-Simons theory enables
us to construct a broader class of three-dimensional gravity
theories, namely, higher spin gravity. A pair of SU(N)
Chern-Simons theories at level k describes a three-
dimensional gravity with spin-s fields for s = 2,3, ..., N.

The central charge of the SU(N) WZW model at level
k reads

_ k(N> —1)

k+N 24)

The chiral conformal dimension of a primary in the repre-
sentation specified by a weight vector 1 =Y ¥ ' Lw; is
given by

(A, A+ 2p)
h,=—— "7 25
A7 2(k+ N) (25)
where p = > ¥! @;. The weight lattice is generated by the

basis {@,...,wy_;} and its inner product is denoted by
(%, *). Here we follow the convention in [32]. The modular S
matrix reads

S =K ctmew |- 2E w4 o)t )| (29

where W is the Weyl group and K is a constant fixed by the
unitary constraint SST = 1.
Now we analytically continue the level as we did in the

SU(2) case, ¢ = ic@ and h, = ih\?), which leads to

_ 2y b R
k=—N+ N(N 1)c<g>+0<c<a>2>‘ (27)

Let us evaluate 88, which gives the vacuum partition
function Zcgg[S?]. By using the known relation
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(p,p) = N(N*—1)/12, the partition function of the
SU(N) Chern-Simons gravity with linked Wilson loops
in the limit (27) looks like

zc¥ (A+p,p+p)
3 (p) 1

ZcsglS? L(R).R,)] = |Si* ~ exp
(28)

It is straightforward to confirm that this reproduces the
previous result (12) if we set N = 2. Moreover, it is useful
to note that this group theoretical argument explains the
partition function with unlinked Wilson loops R; and R,
givenby (5). Indeed, by setting4 = 4; + 4;andu = 0, we can
rewrite (1 + p.u+p) = (4;+p.p) + (41 +p.p) = (p.p).

As in the N =2 case, we will show below that the
partition function (28) of the SU(N) Chern-Simons gravity
computed from the k - —N limit of the SU(N) WZW
model equals that of the corresponding higher spin gravity
in the classical limit, i.e., the large level limit. The
configuration of the SU(N) gauge fields describing a
conical geometry can be constructed in a similar manner
to the AdS case presented in [33]. We find it convenient to
use the A = 0 gauge, where the solution of A is given by

A = (hb*h)~'d(hb?h), (29)

with parameters

N
N+1
b= e =2y
Mewbed  (n="5"-1)
3
h = HCXP [—(eaim1.2i = €aic12i) (i + ;7))
i1
B
h=]]expl(ex12 — €i120) (i — ;7). (30)

Here ¢, ; are N x N matrices with elements (e; ;) = 5;5'.
The on-shell action (1) for the gauge configuration can
be evaluated as

5 -
T Z‘:1 nin;
les =—+=———, (31)
GN PP )
where we use the relation between the Chern-Simons level
and the Newton constant in the higher spin gravity,

L

Let us rewrite the eigenvalues as n; > n,...,7; > 7i,... and
set n;y = —NNy1—j» ;l[ = _ﬁN—Fl—i fori > |_N/2J [34] If we
require n; # n; and 7i; # ii; for i # j, which generically

corresponds to the diagonalizability of the matrix, then we
could set n; = A; + p;, ii; = p; + p;. In this representation,
with the identification (7), we can rewrite (31) as

f P (At pptp)
SC=TTE ()

. (33)

Hence the on-shell partition function Zcgg = e~/cs6 for the
higher spin gravity agrees with the expression (28) obtained
from the modular & matrix as we promised.

Entanglement and black hole entropy.—Let us turn to
the calculation of entanglement entropy in the gravity on
S3. We choose a subsystem A to be a disk on the surface S?,
which separates S* into two hemispheres. We write the
boundary circle of A as I'4. In the replica calculation of
entanglement entropy, we introduce a cut along I’y on S?
and take its n-fold cover to obtain Tr[(p4)"]. The replica
calculation in Chern-Simons theory was performed in [35]
to read off the topological entanglement entropy [36,37] in
terms of modular matrices. In the presence of a Wilson loop
R, which is linked with I'4, we obtain (refer to [38] for an
AdS counterpart)

wc9 (p,p +p)
3 (pp)

For the Einstein gravity (N = 2) with a Wilson loop R, it
takes the following form:

Sy =log|Sh|> = . (34)

. cl9)
SA = log |S{)|2 = 3 \/ 1 - 8GNE] (35)

This indeed coincides with the de Sitter black hole entropy
(16). It is straightforward to extend the above result to the
topological pseudo entropy [39,40].

Discussions: dS/CFT interpretation.—We have shown
that the limit k — —2 for two copies of the SU(2) Chern-
Simons gauge theories, where the central charge of its dual
SU2) WZW model gets infinitely large ¢ — ico, repro-
duces the Einstein gravity on S3. More generally, the large
central charge limit k — —N of the SU(N) WZW model
corresponds to the classical limit of the SU(N) higher spin
gravity on S*. We argue that this is a manifestation of the
(Euclidean version of) dS/CFT correspondence.

One may worry that this might contradict the standard
fact that the classical limit of higher spin gravity on S? is
given by not finite &, but the large k limit of two copies of
SU(N) Chern-Simons theory. To reconcile this tension,
let us consider the following coset CFT, called the
W y-minimal model:

SU(N), x SU(N),
SUWN)er

(36)

which has the central charge

041601-4



PHYSICAL REVIEW LETTERS 129, 041601 (2022)

B N(N +1)
€= (N_1)<1_(N+k)(N+k+1)>' (37)

In [29], this model is argued to be dual to the higher spin
gravity on AdS; (Vasiliev theory [41]) with two complex
scalar fields if we take the ‘t Hooft limit

N

Y

N - oo, k — oo,

This higher spin gravity has the symmetry hs[4], which
enhances to W, [4] at the asymptotic boundary [42,43]. In
our limit kK — —N, the contribution to the total central
charge of the coset is dominated by the SU(N), part and
thus the leading contribution comes from the (nonchiral)
SU(N) WZW model, which is essentially the same model
we have studied in the above. Interestingly, the triality [44]
relates three different values of the previous parameters

(k,N,2) via the following two duality relations:

o N
(KN, Y=-2N-k—-1,N,——
(i) (KN 2) ( N—k—1N. N+k+1),
~ 1-N N
i) (K, N, ) =——,—— N ). 39
i) W) = (e e ) (39)

If we apply the duality (ii) to the k — —2 limit (9) at N = 2
(see also Refs. [45,46] for a similar continuation), we find

(K N} ~ <ic<g) —iﬁ 2> (40)
T 6’ 3°77)
Thus, this theory has W [2] symmetry, i.e., Virasoro
symmetry, which is indeed expected for the FEinstein
gravity. We can generalize this to the k - —N limit of
the SU(N) theory, for which the duality (ii) predicts
W[N] =~ Wy symmetry with the level infinitely large as
expected for the classical SU(N) higher spin gravity. In this
way, our dS/CFT example is consistent with an extension
of earlier results, at least in the leading order.

Finally, we would like to discuss the spectrum of the
SU(N), WZW model. Consider the simplest case with
N = 2. For integer k, the unitary representation is given
with j =0,1/2,1,...,k/2. However, now the level k is
complex as in (9), and moreover, the WZW model is not
unitary due to the imaginary central charge. As discussed
above, the SU(2) WZW model can be regarded as a part of
an analytic continuation of the Virasoro minimal model.
Thus, it is natural to use the representation labeled by j =
0,1/2,1,... without the upper bound of j. The dual
geometry is constructed by the gauge configuration (29)
with (30). Requiring the trivial holonomy conditions
as in [33], the allowed parameter becomes n; — 1/2 =
0,1/2,1,..., which is consistent with the CFT spectrum.

We can see that situation is similar for generic N, as will be
explained in the upcoming paper [47].

This type of analytic continuation has been carefully
analyzed in [44]. The coset CFT (36) has the symmetry of
Wy algebra, but it is useful to consider a larger algebra
W [4] with a complex central charge. The degenerate
representations of W [;1] algebra have been also analyzed
in, e.g., [44,48]. The algebra can be truncated to Wy
algebra atl=N , which is the one used in this Letter. When
k is also positive integer, then a further truncation is
possible, leading to the Wy-minimal model.

The Wy-minimal model has long believed to be equiv-
alent to the coset model (36) with positive integer N, k,
which was proven rather recently in [49]. Similarly, it was
recently shown in [50] that the coset model (36) with
positive integer N but generic k is equivalent to Toda CFT
with generic central charge. The Toda description is useful
to compute correlation functions [51,52]. Let us think about
the simplest example with N =2 again, then the coset
model (36) reduces to the Liouville CFT. The Liouville
CFT is described by a bosonic field ¢ with background
charge Q = b + 1/b. The central charge is

6

. 2 {0
c= 100 =1 kT3

(41)

which also leads to the relation to the level k of the coset
model (36). In particular, the limit k — —2 is realized by
b — 0 (or b — o). The vertex operators are of the form
V, =exp(2a¢), where a = Q/2+ip or a=a,, with
a.,=[b(1-r)+b7'(1-5)]/2 (r,s=1,2,...). The
modular S matrix between these two types is [53]

P
s

5 & sinh(2zrpb) sinh(2zsp/b). (42)
Setting p = (iQ/2)(2j + 1), s =21+ 1, and ic9 ~6/b?
with b — 0, we find

‘S"(Tif)jﬂ) ‘2 N egc@), /1—-8GyE+ /1—SGNEj’ (43)

which reproduces the gravity result (12). This calculation is
equivalent to our previous one, where (2) is applied to
noninteger k and thus justifies our analytical continuation.
Similar analysis is possible for generic N [47].

It will be interesting to examine correlation functions,
quantum gravity corrections, and a Lorentzian continuation
explicitly, which we plan to come back soon [47].
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