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Understanding how the statistical and geometric properties of neural activity relate to performance is a
key problem in theoretical neuroscience and deep learning. Here, we calculate how correlations between
object representations affect the capacity, a measure of linear separability. We show that for spherical object
manifolds, introducing correlations between centroids effectively pushes the spheres closer together, while
introducing correlations between the axes effectively shrinks their radii, revealing a duality between
correlations and geometry with respect to the problem of classification. We then apply our results to
accurately estimate the capacity of deep network data.

DOI: 10.1103/PhysRevLett.131.027301

Introduction.—Neural networks can learn rich represen-
tations of the world. This capacity for representation
learning is thought to underlie deep learning’s unprec-
edented success across a wide variety of tasks. However, it
is unclear how the geometric and statistical properties of
neural network representations shape network performance
on common tasks. Recent work addresses this gap by
studying the interaction between artificial neural network
representations and performance on classification and
memorization tasks [1–10], with complementary work in
neuroscience studying the interaction between the structure
of biological neural network representations and animal
behavior [11–14]. Specifically, in Refs. [15–17], the
authors introduce the manifold shattering capacity, a
measure capturing how easy it is to separate random binary
partitions of a set of manifolds with a hyperplane, and
express it in terms of the underlying manifold geometry. In
this way, network performance on a classification task, as
measured by the capacity, can be understood through the
geometric structure of the network representations.
Previous works on the manifold capacity have either

ignored or coarsely approximated the effects of neural
correlations. The best approximation to these effects was
reported in Ref. [16], where the authors “project out” low-
rank correlation structures in manifold centroids. However,
the authors find that this approach breaks down when
applied to certain artificial network data. Moreover, this
approach does not offer analytical insight into the role of
different types of correlations in object classification.
Object representations in artificial and biological neural

networks exhibit intricate correlation structures, which
reflect important properties of the underlying representa-
tions [18–21]. Moreover, as the deep learning community

shifts to a self-supervised learning paradigm, many popular
loss functions directly enforce particular correlation
structures between the latent representations of (possibly
augmented) batches of data points [22–25]. These consid-
erations call for a theoretical characterization of the
relationship between network performance, representa-
tional geometry, and the correlation structure of network
representations.
In this Letter, we calculate the effects of correlation

structures on the capacity. Our formula for the capacity of
correlated manifolds generalizes the results in Ref. [15] by
stretching the Euclidean norm appearing in previous
results in the directions of the eigenvectors of the
covariance tensor. We analyze this formula in a simple
setting, showing how geometry and correlations interact
to determine the capacity, and we go on to apply this
formula to accurately estimate the capacity of deep net-
work data.
Problem statement.—Consider a set of P manifolds,Mμ,

residing in RN . These manifolds correspond to distinct sets
of neuronal activation vectors when presented with differ-
ent types of stimuli—for example, the set of neural
activations for a set of P classes across all possible class
instances in a given layer of an image recognition network
[Fig. 1(a)]. In what follows, we assume that each manifold
resides in an affine subspace of maximal dimensionK < N.
That is, for any x ∈ Mμ, we have that x ¼ uμ0 þ

P
K
i¼1 s

μ
i u

μ
i ,

where uμ0 is a manifold center, uμi for 1 ≤ i ≤ K is a set of
manifold axes, and s ∈ Sμ are the coordinates of x with
respect to the manifold axes. We use Sμ ⊂ RK to denote the
set of all possible coordinates in this basis.
We take the manifold center uμ0 to be the average

activation of the network layer when presented with a data
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point from class μ. The spread of the manifold along the
axes therefore corresponds to the network variability as we
sample different stimuli from class μ. Intuitively, manifolds
with large centroid norms far away from one another with
small spreads along their axes will be easier to classify than
large manifolds tightly packed together.
We now turn to the problem of determining the maximal

number of manifolds per dimension, α≡ P=N, which are,
given some random binary labelings yμ ∈ f−1; 1g and
some underlying distribution on the uμi , linearly separable
with high probability at a fixed margin κ. In what
follows, we will be specifically interested in the thermo-
dynamic limit, N;P → ∞ with P=N ¼ Oð1Þ. In other
words, we find the greatest α such that there exists a
hyperplane with normal w ∈ RN , kwk22 ¼ N satisfying
minx∈Mμyμhw; xi ≥ κ for each manifold Mμ with proba-
bility 1 in this limit. We define the manifold capacity to be
this maximal value of α, so that larger capacities imply a
more favorable representational geometry for the purpose
of classification.
Following Refs. [2,15,30–34], we study this problem by

calculating the average log-volume of the space of sol-
utions in the thermodynamic limit:

logVol ¼ log
Z
Sð ffiffiffi

N
p Þ

dNw
Y
μ

Θðmin
x∈Mμ

yμhw; xi − κÞ; ð1Þ

where Sð ffiffiffiffi
N

p Þ is the sphere of radius
ffiffiffiffi
N

p
, Θð·Þ is the

Heaviside step function, and the average is taken with
respect to the quenched disorder in the labels yμ and the
axes and centroids uμi . Viewing the volume as a partition
function, we can see that −N−1 logVol corresponds to a free
energy density, which we assume is self-averaging [35].
Given a fixed set of manifold shapes Sμ, and choosing the
axes and centroids to be independent from one another with
uμi ∼N ð0; N−1IðNÞÞ, the capacity for such randomly ori-
ented manifolds, αM, is given by [15]

1

αMðκÞ
¼ 1

P

Z
DIT min

V∈A

X
i;μ

ðVμ
i − Tμ

i Þ2; ð2Þ

where DIT ¼ Q
μ;i dT

μ
i exp½− 1

2
ðTμ

i Þ2�=
ffiffiffiffiffiffi
2π

p
is an isotropic

Gaussian measure and A is a convex set of matrices which
depends on the geometry of the manifolds, as reflected by
their shapes, Sμ:

A≡
�
V ∈ RP×ðKþ1Þ∶ Vμ

0 þ min
sμ∈Sμ

XK
i¼1

Vμ
i s

μ
i ≥ κ

�
: ð3Þ

Note the similarity to the constraint in the Θ function in
Eq. (1). Indeed, the variable Vμ

i corresponds to the inner
product of the solution vector w with the ith axis (or
centroid) of the μth manifold, multiplied by the label:
Vμ
i ≡ yμhw; uμi i. These are the so-called signed fields of

the solution vector on the uμi [15]. In this way, the capacity
can be understood as a function of the geometry of the
manifolds as reflected in the set Sμ. In the special case that
the manifolds are simply randomly oriented points, the
capacity is given by [30]

1

αpointðκÞ
¼

Z
κ

−∞

dξffiffiffiffiffiffi
2π

p e−
1
2
ξ2ðξ − κÞ2: ð4Þ

From this formula, we can see that the shape sets Sμ cause a
lower capacity when compared to that of points.
Replica theory for correlated manifolds.—Here,

we consider the situation where manifold axes and cent-
roids are correlated with one another. Intuitively, this
corresponds to the fact that different classes in a dataset
may be more or less similar to one another in the neural
representation space. We enforce correlated axes and
centroids by assuming that huμi ; uνji ¼ Cμ;i

ν;j for some
positive definite covariance tensor Cμ;i

ν;j. This is done by
placing a Gaussian distribution on the centroids and axes:
pðuÞ ∝ exp½−ðN=2ÞPμ;ν;i;j;lðC−1Þμ;iν;ju

μ
i;lu

ν
j;l�.

We calculate the capacity for correlated manifolds using
the replica method [35,36]; the details can be found in the

FIG. 1. (a) Neural manifolds arising from different instances of
P ¼ 3 object classes (bird, vase, and cloud [26–29]), with N ¼ 3

neurons. We parametrize the manifolds in terms of a centroid uμ0,
axes uμi>0, and shape vectors Sμ, determining which linear
combinations of the axes lie within the manifold. (b) Neural
manifolds with correlations in their centroids. (c) Neural mani-
folds with fully correlated axes. In all three images, different
colors correspond to different object class manifolds.
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Supplemental Material [37]. We find that the capacity at a
margin κ, denoted by αcorðκÞ, is

1

αcorðκÞ
¼ 1

P

Z
Dy;CT min

V∈A
kV − Tk2y;C; ð5Þ

where Dy;CT is the zero-mean Gaussian measure with

covariance tensor yμyνCμ;i
ν;j, and the overline denotes the

remaining average with respect to the labels yμ. Note
too that we have defined the Mahalanobis norm:
kXk2y;C ≡P

μ;ν;i;j y
μyνðC−1Þμ;iν;jX

μ
i X

ν
j , which effectively

stretches the Frobenius norm along the eigenvectors of
the tensor yμyνCμ;i

ν;j (Fig. 2).
Comparison with other capacity estimators.—It is worth

pausing and comparing Eq. (5) to the solution for uncorre-
lated manifolds in Eq. (2) reported in Refs. [15,16]. From
Eqs. (2) and (5), we can see that axes and centroid
correlations distort the norm in the minimization from
the Euclidean norm to a random Mahalanobis norm which
depends on the covariance tensor C and the random labels
yμ (Fig. 2). As such, we expect that the quality of the αM
estimator from Eq. (2) degrades as the manifold axes and
centroids become more correlated with one another. We
find that this is the case for both αM and the low-rank

approximation method reported in Ref. [16] when applied
to Gaussian point cloud manifolds (Fig. 3). Therefore, the
correlated capacity estimator, αcor, whose numerical imple-
mentation we describe in the Supplemental Material [37],
should be used whenever working with manifolds with
strong correlations (see Ref. [39]).
The special case of spheres.—We now look for an

answer to the problem we were originally interested in:
What are the effects of manifold correlations on the
capacity? We answer this question by analytically solving
Eq. (5) in a simple setting: K-dimensional spheres with
homogeneous axis and centroid correlations. More
precisely, we assume that the manifold shape sets Sμ

are spheres of radius 1, and the covariance tensor C is
defined by

Cμ;i
ν;j ≡

8>><
>>:

δi;j½ð1 − λÞδμ;ν þ λ� for i; j > 0

ð1 − ψÞδμ;ν þ ψ for i; j ¼ 0

0 for i > 0; j ¼ 0;

ð6Þ

where 0 ≤ ψ , λ < 1. The average centroid norms and
sphere radii are then respectively controlled by the scalars
r0 and r, so that for all μ and x ∈ Mμ, we have that
x ¼ r0u

μ
0 þ r

P
K
i¼1 siu

μ
i , with

P
iðsiÞ2 ≤ 1. The variables

λ, ψ respectively determine the degree of correlation
between the axes and centroids: As λ, ψ → 1, the axes
and centroids will be fully correlated with one another,
while λ, ψ → 0 implies randomly oriented axes and
centroids [Fig. 4(a)].
Even under these simplifying assumptions, the minimi-

zation in Eq. (5) is not directly solvable. As such, we
reframe the problem in terms of a statistical mechanical
system with quenched disorder and study the limit P → ∞.
To do this, note that the constraint on the fields can be
rewritten as r0V

μ
0 − r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i>0ðVμ

i Þ2
p

≥ κ, as can be seen by
applying the Karush-Kuhn-Tucker (KKT) conditions [41]

FIG. 2. The effect of correlations on the optimization landscape
for V0. First column: Two manifolds with (a) uncorrelated and
(c) correlated centroids arising from the activations of two
neurons, n1 and n2. Second column: Level curves for
kV − Tk2y;C, given fixed y and Vi>0 for the (b) uncorrelated
and (d) correlated manifolds. Shaded regions correspond to areas
where the constraint is satisfied—i.e., sections of the set A in
Eq. (3). Clearly, correlations warp the optimization landscape
along the eigenvectors P1, P2 of the centroid covariance matrix
with off-diagonal sign flips yμyνCμ;0

ν;0 .

FIG. 3. Comparison of three different capacity estimators,
including the low-rank approximation of Ref. [16], to the
numerically estimated ground truth simulation capacity (blue
triangles) described in Ref. [40]. The correlation intensity denotes
the magnitude of the off-diagonal correlations—see the Supple-
mental Material for more details [37].
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to the Lagrangian LðS; ηÞ ¼ r
P

i>0 V
μ
i Si þ ηðkSk2 − 1Þ

(see the Supplemental Material [37]). The capacity can
then be derived by studying the following Gibbs measure:

1

Z
exp

�
−
β

2

X
i;j;μ;ν

yμyνðC−1Þμ;iν;jðVμ
i − Tμ

i ÞðVν
j − Tν

jÞ
�

×
Y
μ

Θ
�
r0V

μ
0 − r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i>0

ðVμ
i Þ2

r
− κ

�
dVμ; ð7Þ

where Z is the partition function [42]. We can see that
1=αcorðκÞ is then given by the average energy in the zero-
temperature limit: ½αcorðκÞ�−1 ¼ −ð2=PÞlimβ→∞ð∂=∂βÞ
logZ, with the overline denoting the average with respect
to the T and the labels yμ. We calculate the resulting free
energy density using the replica method—see the
Supplemental Material for details [37].
Under these assumptions, the capacity is given by

1

αcorðκÞ
¼Kð ffiffiffi

q
p

−1Þ2þ
Z

κ̂ðqÞ

−∞

dξffiffiffiffiffiffi
2π

p e−
1
2
ξ2ðξ− κ̂ðqÞÞ2; ð8Þ

where q is the scaled squared norm of the signed fields of

an arbitrary sphere, q≡P
i>0ðVμ

i Þ2=ðKð1 − λÞÞ, and κ̂ðqÞ
is an effective margin. The values of the q and κ̂ðqÞ are then
fixed by the self-consistent equations

ffiffiffi
q

p ¼ 1þ r
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð1 − ψÞp

Z
κ̂ðqÞ

−∞

dξffiffiffiffiffiffi
2π

p e−
1
2
ξ2ðξ − κ̂ðqÞÞ;

κ̂ðqÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð1 − λÞqp þ κ

r0
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψ

p : ð9Þ

With our definition of q and κ̂ðqÞ in hand, we can see that
the capacity for correlated spheres is the same as the
capacity of random points given in Eq. (4) with an effective
margin of κ̂ðqÞ, plus an extra bias term which corresponds
to additional contributions to the capacity from the corre-
lations and spread of the spheres.
The above solution gives a direct view into the effects of

correlations on manifold separability. From Eqs. (8)
and (9), we can see that when κ ¼ 0, both q and
the effective margin are fully determined by the ratio
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − λÞp
=ðr0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψ

p Þ (Fig. 4). Even when κ ≠ 0, the
sphere radii and centroid scalings, r; r0, and the respective
correlations, λ, ψ , only affect the capacity through the
products: r

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
, r0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψ

p
. This implies that increasing

the axis or centroid correlations affects the capacity in the
same way as shrinking the spheres or centroid norms does.
That is, axis correlations effectively shrink the sphere radii,
while centroid correlations effectively push the manifolds
closer to the origin.
These effects are most dramatic when we consider the

limits of fully correlated manifolds. In the fully correlated

centroids limit, ψ → 1, we can see that the capacity falls to
0. Conversely, in the fully correlated axes limit, λ → 1, we
can see that

ffiffiffi
q

p
→ 1, so that the capacity grows to the capa-

city for random points with margin κ=ðr0
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψ

p Þ [30].
This shows that high-dimensional, fully correlated spheres
are as easy to separate as randomly oriented points—see
Refs. [4,34] for related results.
Application to deep network manifolds.—Having studied

our theoretical predictions in two simple settings, we now
consider the performance of our capacity estimator, αcor,
when applied to neural manifolds from a pretrained SimCLR
ResNet50 network on the ImageNet dataset [22,43,44]. We
can see from Fig. 5 that the low rank approximation [16]
significantly overestimates the capacity in later layers of the

FIG. 4. The capacity for correlated spheres. (a) Visual dem-
onstration of spherical manifolds with low-rank axis and centroid
correlations. (b) The zero-margin capacity as a function of only
the input ratio r

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
=ðr0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψ

p Þ. Points represent averages
over five random sphere samplings, and the solid line represents
the theoretical prediction. For each experiment, we fix three of the
four parameters and vary the remaining one to obtain a fixed
value of the ratio.

FIG. 5. Comparison of the low-rank approximation (yellow
dashed line) [16], αM (red dotted line) [15], and our αcor
calculation (green solid line) to the ground truth simulation
capacity (blue triangles) [17] on data manifolds arising from the
ResNet50 artificial neural network architecture trained using
SimCLR on the ImageNet dataset [22,43].
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network. Note that while we can numerically estimate the
ground truth simulation capacity here because we use few
data points (see the Supplemental Material [37]), this is
computationally infeasible for larger data manifolds [16,40].
Thus, our αcor estimator can be used to estimate the capacity
where other methods fail.
Discussion.—In this Letter, we considered the problem

of linearly separating a set of high-dimensional manifolds
whose centroids and axes are correlated with one another.
We first derived an expression for the capacity of general
manifolds with arbitrary covariance tensors. After showing
that the resulting expression outperforms previous capacity
estimators when presented with correlated manifolds, we
turned to the problem of interpreting the resulting expres-
sion for the capacity. To this end, we considered the
problem of linearly separating spheres with homogeneous
correlations along the centroids and axes. The resulting
expression for the capacity closely tracks the capacity for
points with an effective margin determined by the geometry
and correlations of the spheres. Remarkably, we found that
centroid and axis correlations play the same roles as the
distance of the spheres from the origin and the sphere radii,
respectively. These findings reveal a duality between
representational geometry and correlations with respect
to the problem of classification.
Our Letter suggests two main subsequent lines

of research. First, given the rising popularity and sophisti-
cation of geometric analysis methods in neuroscience [11–
13,15,16], together with the extensive literature examining
the phenomenology and role of different types of neural
correlations [18,19], we hope to apply the results from this
study to further connect these two lines of inquiry. One
particularly interesting approach in this direction would be to
apply our results to study the relationship between hierar-
chical correlation structures, geometry, and the organization
of abstract knowledge, especially in the context of multilabel
classification [12,45,46]. Another interesting approach
would be to use Eq. (5) to derive a set of metrics quantifying
the effects of different types of neural correlations on the
capacity for arbitrary data manifolds, complementing pre-
existing measures describing the impact of geometry on the
capacity [15,16].
Second, our results regarding spheres with correlated

axes suggest that self-supervised objectives which produce
positive correlations between manifold axes could yield
latent representations with favorable classification proper-
ties. If we further define manifold axes using the translation
between an original image and its augmentation, such an
objective could also produce representations which are
disentangled with respect to, for example, color distortion
and rotation [47,48]. We hope to pursue this line of research
in subsequent work.

The authors thank Abdulkadir Canatar and Chi-Ning
Chou for their comments on an earlier version of this
manuscript.
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