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We present an exact dimensionality reduction for dynamics of an arbitrary array of globally coupled
complex-valued Riccati equations. It generalizes the Watanabe-Strogatz theory [Integrability of a globally
coupled oscillator array, Phys. Rev. Lett. 70, 2391 (1993).] for sinusoidally coupled phase oscillators and
seamlessly includes quadratic integrate-and-fire neurons as the real-valued special case. This simple
formulation reshapes our understanding of a broad class of coupled systems—including a particular class
of phase-amplitude oscillators—which newly fall under the category of integrable systems. Precise and
rigorous analysis of complex Riccati arrays is now within reach, paving a way to a deeper understanding of
emergent behavior of collective dynamics in coupled systems.
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The study of complex systems often involves describing
them using a few relevant variables known as order param-
eters. Such dimensionality reduction techniques are highly
useful but challenging to discover, and they may not exist for
every system. In this regard,Watanabe and Strogatz [1] (WS)
made significant progress by demonstrating how globally
coupled phase oscillators can be effectively described using
only three order parameters. This reduction arises from a
specific subclass of complex Riccati equations [2,3] that
govern the dynamics of such oscillatory arrays. The macro-
scopic variables are parameters of a Möbius transform that
relates the dynamical state variables to constants determined
by the initial states of theoscillator array [4]. Remarkably,Ott
and Antonsen [5] showed that for large ensembles of non-
identical oscillators, the dynamics even collapses to an
effectively 2D manifold. These descriptions have proven
immensely useful in studying the collective dynamics of
coupled oscillatory systems [6] and foundmany applications,
particularly in neuroscience [7,8].
In this Letter, we present a framework that generalizes

these dimensionality reductions to a larger class of systems:
an arbitrary array j ¼ 1;…; N of globally forced complex
Riccati equations,

ẋj ¼ ax2j þ bxj þ c; a; b; c∈C; ð1Þ

where all a; b; c∈C can be arbitrary complex functions of
time and xj ∈C can start with arbitrary complex values.

The choice for a, b, c allows selecting from a range of
coupled oscillator systems. Certain choices reproduce
known models, such as the quadratic integrate-and-fire
neurons (QIF) and phase oscillators; but the possibilities go
far beyond that and cover a broad class of 2D systems.
The flow of array variables xj in (1) is given by the

following Möbius transformation:

xj ¼ Qþ yξj
1þ sξj

; ð2Þ

where the three global complex-valued variables Q, y, s
evolve according to

Q̇ ¼ aQ2 þ bQþ c; ð3aÞ

ẏ ¼ ðbþ 2aQÞy; ð3bÞ

ṡ ¼ −ay; ð3cÞ

and ξj ∈C are constants determined by the initial values of
the oscillator array variables [9] [cf. Eqs. (4) in [10] and
Eqs. (15)–(17) in [11] ]. Since these equations completely
generate the flow of the original system (1), this implies
that the dynamics of Eqs. (1) is effectively six dimensional.
See Supplemental Material [12] for a proof of this result.
Choosing initial conditions.—Since we started with an

array of N variables fxjg and now we describe the system
with the three macroscopic variables Q, y, s, and N
constants fξjg, we have some freedom in choosing the
relationship between these variables. An additional con-
straint of choice is set on the initial values, that defines the
exact relationship between xj and Q; y; s; ξj. We present
two convenient options here. (I) Identity conversion: a
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straightforward way to determine initial conditions is
requiring that variables xj initially coincide with constants
ξj [cf. Eq. (3.7) in [2] ]

Qð0Þ ¼ 0; yð0Þ ¼ 1; sð0Þ ¼ 0; ξj ¼ xjð0Þ: ð4Þ

(II) Möbius conversion: In general, the relation between xj
and ξj is a Möbius transform. We here use

Qð0Þ¼ i; yð0Þ¼−2i; sð0Þ¼1; ξj¼
i−xjð0Þ
iþxjð0Þ

: ð5Þ

In different situations different initial condition choices are
more appropriate—we will see examples of both options in
the later examples. Other options for initial constraints are
possible as well, e.g.,

P
j ξj ¼ 0 [cf. Eq. (4.12) in [2] ], see

Supplemental Material [12] for more details.
Special case of real-valued arrays.—We can consider

the special case of real coefficients and real initial con-
ditions: a; b; c; xjð0Þ∈R. Consequently, the flow of var-
iables is real valued, xjðtÞ∈R for all t ≥ 0. The dynamics
is then three dimensional, which is easiest to see with
constraint (4) which make Q, y, s initially real, and since
they follow Eqs. (3) with real coefficients, they remain real
with evolution. An example of this special case is a globally
coupled array of identical QIF neurons [13,14]. Individual
voltages xjðtÞ obey

ẋj ¼ x2j þ I; if xj > xthr then xj ↦ xreset; ð6Þ

where the voltage threshold and reset values are xthr ¼ ∞
and xreset ¼ −∞. The current I can have a constant
component I0 associated with intrinsic neuronal dynamics,
but it can also represent external forcing (even noisy) or
global coupling, e.g., the input current generated by N
globally coupled QIF neurons with pulses PðuÞ is
expressed as

I ¼ I0 þ
ϵ

N

XN
j¼1

Pð1=xjÞ: ð7Þ

Within our formalism, the voltage spikes naturally occur
when the denominator 1þ sξj in (2) crosses zero. As a
result, the voltage in that instance reachesþ∞ uponwhich it
is reset to −∞. What has to be considered, however, is that
depending on the chosen initial constraint, Q might also
diverge. Indeed, this is the case if one chooses initial
conditions according to (4): Qð0Þ ¼ sð0Þ ¼ yð0Þ − 1 ¼ 0
in which case additional resetting of variables would be
needed [15]. However, diverging variables and additional
resetting can be avoided by simply choosing the appropriate
initial conditions (5): Qð0Þ ¼ i; yð0Þ ¼ −2i; sð0Þ ¼ 1. The
constants ξj then relate to xj via a Möbius transform:
ξj ¼ ½i − xjð0Þ�=½iþ xjð0Þ�. Since xjð0Þ take real values,

the constants ξj are unitary jξjj ¼ 1, and can thus be
described by their argument ψ j: ξj ¼ eiψ j .
For this specific case of a; b; c; xj ∈R and initial con-

straint (5) the following simplification is true:

y ¼ −ðQ − Q̄Þs; ð8Þ

which reduces the dynamical equations (3) to

Q̇ ¼ aQ2 þ bQþ c; ð9aÞ

ζ̇ ¼ −iaðQ − Q̄Þ ¼ 2aIm½Q�; ð9bÞ

where ζ∈R is the argument of s ¼ eiζ. Note that these
dynamics are three dimensional since Q now takes on
complex values (even though xj ∈R). The transformation
(2) is reduced to

xj ¼ Q − ðQ − Q̄Þ eiðψjþζÞ

1þ eiðψ jþζÞ ¼ Q̄þ ðQ − Q̄Þ
1þ eiðψjþζÞ : ð10Þ

The variableQ remains bounded for all times, no additional
resetting is needed and the spikes occur when the denom-
inator 1þ eiðψjþζÞ crosses 0, i.e., when ζ ¼ π − ψ j. A
numerical example of this special case is shown later in
Fig. 1. One can arrive at the same dynamics by trans-
forming the QIF neurons into theta neurons via the trans-
formation xj ¼ tanðθj=2Þ and then employing the
Watanabe-Strogatz theory for phase oscillators [1,2,4].
For more on how our formalism relates to the Watanabe-
Strogatz theory for phase oscillators see Supplemental
Material [12], which includes Refs. [16,17].
Such a description of QIF neurons has already been

considered in the continuum limit N → ∞, cf. Eqs. (42)

FIG. 1. N ¼ 8 quadratic integrate-and-fire neurons with global
coupling interacting via Gaussian pulses. The dynamics is exactly
described by the low dimensional Eqs. (9). Left panel: time series
of the input current IðtÞ, alongside the individual neurons’ firing
events (top). Right panel: trajectory of the macroscopic variable
QðtÞ determining voltages via (10).
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in [18]. If additionally the distribution of xj variables is
Cauchy-Lorenztian, the dynamics further simplifies and
variableQ completely determines the macroscopic state, its
real and imaginary component correlating to the firing rate
and mean voltage [19].
Examples.—We now present some specific systems

where the dimensionality reduction can be applied and
with numerical simulations validate its exactness. First (I),
a known and relatable example of pulse-coupled real-
valued QIF neurons. It is known that this system possesses
low-dimensional dynamics since the QIF model can be
transformed into a theta neuron to which the WS theory
applies. Our formalism provides not only a new perspective
of this fact, but also justifies the voltage resetting at infinity
by viewing the model as a limiting case of the extended
complex model. Next, we show two examples which
generalize known models to complex values. Example (II),
the complex generalization of the QIF model, where we
simply allow the “voltage” variables to attain complex
values. And example (III) concerns a complex-valued
generalization of phase oscillators, specifically we choose
overdamped Josephson junctions. An additional example is
found in Supplemental Material [12] of how our description
applies to infinite ensembles in the thermodynamic limit,
and how particular integrals can simplify with set initial
conditions.
Example (I): Real QIF model.—We consider N ¼ 8

excitable QIF neurons (6), (7) with I0 ¼ −0.001, interact-
ing via Gaussian pulses PðuÞ ¼ ffiffiffiffiffiffiffiffi

σ=π
p

expð−σu2Þ, where
σ ¼ 5 and coupling strength ϵ ¼ 2.3. Initial conditions are
fxjð0Þg ¼ f−ðN − 1Þ=2þ jg, j ¼ 1;…; N. These param-
eters yield chaotic dynamics, see Fig. 1. We integrate the
reduced three dimensional system using Eqs. (9) and
compare the resulting trajectories with the ones obtained
from N ¼ 8 coupled voltage equations (6), we see an exact
overlap, as expected.
For ensembles of pure phase oscillators the Kuramoto

order parameter is defined as Z1 ¼ 1=N
P

N
j¼0 e

iφj where its
amplitude jZ1j quantifies the order in the system. This is
easily generalized to the full complex plane by simply
invoking the mean [20]:

Z1 ¼
1

N

XN
j¼0

xj; ð11Þ

which is neatly expressed with dynamical variables Q, y, s
and constants ξj,

Z1 ¼ Qþ y
1

N

XN
j¼1

ξj
1þ sξj

: ð12Þ

The sum 1=N
P

j ξj=ð1þ sξjÞ can be seen as a function
constant in time, that holds the information of initial
conditions and only depends on the variable s.

Example (II): Complex QIF model.—Let us consider a
simple generalization of the QIF neurons to the complex
plane. If the voltages xj start off the real axis, then they
never diverge and there is no need for resetting conditions
in (6). Let us consider such generalized QIF neurons,
globally coupled via the first moment Z1 (11),

ẋj ¼ x2j þ I0 þ ϵðZ1 − xþ0 Þ; ð13Þ
where I0 is the intrinsic input current and xþ0 the positive-
imaginary fixed point of individual neurons (which can be
absorbed in the current I0 ↦ I0 − ϵxþ0 ). In the form of the
initial Riccati equation (1) this model translates to the
parameters: a ¼ 1, b ¼ 0, c ¼ I0 þ ϵðZ1 − xþ0 Þ. On the real
line the behavior of an individual unit xj tends toward infinity
in finite time and hence one needs a reset rule (6) aswell as an
implementation of a pulse during that event. However, if the
dynamics occurs instead in the complex plane, the trajectory
of this unit naturally oscillates around a fixed point. The
uncoupled system is time reversible, invariant under the
involution: Re½x�j ↦ −Re½x�j, t ↦ −t, which allows for a
continuum of closed orbits symmetric with respect to the
imaginary axis if I0 > 0, see Supplemental Material for
details [12]. Indeed, we find two center fixed points of the
single unit dynamics: x�0 ¼ �i

ffiffiffiffi
I0

p
. Whenwe couple several

units together, they remain oscillatory. In our example we
useN ¼ 8 oscillators with I0 ¼ 1, ϵ ¼ −5 and initial condi-
tions: fxjð0Þg¼fxþ0 þðj2=20Þexp½iðπ=2NÞðj−1Þ�g, j ¼
1;…; N. The dynamics settles into periodic motion with a
nontrivial limit cycle, as shown in Fig. 2.

FIG. 2. Complex generalization of coupled quadratic integrate-
and-fire neurons (13). Unlike the real QIF model, the voltage
resetting in this complex generalization is redundant since the
dynamics everywhere (except the special case of real line with
real coupling) loops back and stays finite; see also example (I) in
Fig. 1 where voltages diverge, but the resetting naturally results
from the transformation (2). N ¼ 8 units settle into periodic
motion with a nontrivial limit cycle. Trajectories of oscillators on
the limit cycle in the complex plane are depicted with colored
lines. Initial conditions are marked with (color-coded) points. The
fixed point xþ0 is emphasized with a black dot.
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Example (III): Complex generalization of phase oscil-
lators.—Now let us generalize phase oscillators to include a
free amplitude. Consider the phase dynamics equation in
complex exponential form:

ẋj ¼ −h̄x2j þ iωxj þ h; ð14Þ

but allow that oscillators have amplitude rj different from
1: xj ¼ rjeiφj . This choice results in a special family of
phase-amplitude oscillators:

φ̇j ¼ ω −
�
1

rj
þ rj

�
Im½he−iφj �; ð15aÞ

ṙj ¼ ð1 − r2jÞRe½he−iφj �: ð15bÞ

Note that rj ¼ 1 defines an invariant subspace that oscil-
lators cannot cross: oscillators that start on the inside of the
unit disk stay inside the disk forever. For this example we
consider a complex generalization of coupled Josephson
junctions [cf. Eq. (3.16) in [2] ],

a ¼ −c ¼ 0.75; b ¼ i − 0.7iIm½Z1�; ð16Þ

where Z1 is the generalized Kuramoto order parameter (11).
We use N ¼ 8 units with initial conditions: fxjð0Þg ¼
f−i sin½ðπ=NÞj� exp½ið2π=NÞj�g, j ¼ 1;…; N. Just like
in the case of pure phase oscillators, for this parameter
choice we observe chaos, see Fig. 3, cf. Fig. 4(c) in [2] and
Fig. 2 in [21].

Discussion.—Our study presents a novel low-
dimensional description that generalizes the well-known
WS [1,2] theory to arbitrary arrays of complex Riccati
equations, and so includes the real QIF model as a limiting
case. This exact formalism enables the consideration of a
whole new class of complex oscillatory models, including a
special case of phase-amplitude oscillators. To showcase its
correctness and applicability, we provide numerical simu-
lations for several interesting examples.
The new formalism is effectively six dimensional, as

compared to the three dimensional WS theory—this is not
surprising as the generalization from real R to complex C
variables implies twice the dimensionality. However, it
should be noted that the generalization does not simply
involve allowing the dynamical variables to take complex
values; rather, the equations we obtain are fundamentally
different from those described by WS theory. What is
common with the WS theory is that the overarching motif is
the Möbius transform between initial values of the dynami-
cal variables xj and the constants ξj. As was explored later
[4], cross-ratios of dynamical variables Cj ¼ ½ðxj − xjþ2Þ=
ðxj − xjþ3Þ�½ðxjþ1 − xjþ3Þ=ðxjþ1 − xjþ2Þ� are invariant
under the Möbius transform and thus constants of motion.
Where in the WS context these cross-ratios are real (even
though xj ¼ eiφj ∈C), here they can be complex: Cj ∈C.
Just as was shown in [4], there are N − 3 independent ratios
Cj, j ¼ 1;…; N − 3. Since the initial problem contains N
complex variables (1), and there are N − 3 complex
constants of motion, this leaves three complex variables
to describe dynamics (3), thus confirming that the descrip-
tion is six dimensional.
For real-phase oscillators in the thermodynamic limit

the inclusion of heterogeneity [5,22] or noise [23] leads
to terms of complex-valued effective frequencies. Our
description (3) is clearly applicable to describe those
scenarios as well, as we have shown in previous work
[18,24]. This remarkable equivalence between noise and
heterogeneity, and complex valued frequencies can be
studied further with our approach.
The generalization to complex numbers is substantial

and provides room for qualitatively different dynamics. A
complex extension of the Kuramoto model has recently
been explored in [25]; but our description applies to a much
broader class of coupled systems described by complex
Riccati arrays defined in Eqs. (1). This unlocks a whole
spectrum of 2D dynamical systems, including a special
case of phase-amplitude oscillators (15) we showcased
here. The examples considered here are simply complex
generalizations of known models: example (II) a generali-
zation of QIF and example (III) a generalization of phase
oscillators. One can explore systems that go beyond just
generalizing known models to complex initial conditions,
and really consider complex units with complex coupling,
thus tapping into the rich 2D dynamics of intrinsic units
defined by Riccati equations (1).

FIG. 3. Array of N ¼ 8 Josephson junctions (16) with complex
initial conditions inside the unit disk (colored points) generalize
pure phase oscillators bound on the unit circle, see Fig. 4(c) in [2]
and Fig. 2 in [21]. Trajectory of one oscillator in the complex
plane is shown in orange. Small blue scatter points depict the
value of Z1 on the Poincaré section where the oscillator on the
unit circle passes phase π=2.

PHYSICAL REVIEW LETTERS 132, 057201 (2024)

057201-4



Moreover, the new description provides a fresh perspec-
tive and insights into the relationship between phase
oscillators and QIF neurons. In fact, the voltage resetting
in QIF neurons arises naturally in our framework, providing
additional motivation for its use in studying neuronal
dynamics and development of new models.
Our findings have significant implications for both

theoretical and practical research. The new description
opens up many avenues for investigating the dynamics of
complex systems. Several ideas for future work directly
follow from our framework, and more are expected to arise
from the research community. We briefly outline three
ideas here. (A) It is well known that the general Riccati
equation can be transformed into a linear second order
ODE [26], which means that our formalism applies there
as well. A more detailed study will be performed in a
forthcoming work. (B) Most likely similar descriptions
exist for higher dimensional systems as well; both for
systems with larger spatial dimensionality [27], xj ∈Rn,
n > 1, such as the generalizations to vectors [28] and
matrices [11], as well as allowing for states xj that belong to
higher number systems, such as quaternions or octonions.
(C) For the special case of phase oscillators and QIF
neurons, in the thermodynamic limit N → ∞ a particular
initial state leads to an additional dynamical reduction as
described by Ott and Antonsen [5]. One would expect that
similar reductions can be found for the more general case of
a; b; c; xj ∈C. It would be interesting to know which states
allow for additional reductions and what are the reduced
dynamics. (D) Throughout this work we strictly considered
identical oscillators, i.e., at all times every oscillator felt
the same global forcings exerted by a, b, c. Thus, the
oscillators only differed by their states xj which are
determined by the initial conditions. However, one may
consider adding heterogeneity in the forces by assuming
that a, b, c in some way differ between oscillators. Just like
Ott and Antonsen incorporated Cauchy-Lorentzian inho-
mogeneities in frequencies [5], one can add them to our
formalism in the thermodynamic limit as well. It is even
likely that particular heterogeneity can be incorporated into
finite arrays.

We thank Arkady Pikovsky and Steven Strogatz for
useful discussion and comments. We gratefully acknowl-
edge financial support from the Royal Swedish
Physiographic Society of Lund and the DFG (Grant
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