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Active constituents burn fuel to sustain individual motion, giving rise to collective effects that are not
seen in systems at thermal equilibrium, such as phase separation with purely repulsive interactions. There is
a great potential in harnessing the striking phenomenology of active matter to build novel controllable and
responsive materials that surpass passive ones. Yet, we currently lack a systematic roadmap to predict the
protocols driving active systems between different states in a way that is thermodynamically optimal.
Equilibrium thermodynamics is an inadequate foundation to this end, due to the dissipation rate arising
from the constant fuel consumption in active matter. Here, we derive and implement a versatile framework
for the thermodynamic control of active matter. Combining recent developments in stochastic thermo-
dynamics and response theory, our approach shows how to find the optimal control for either continuous- or
discrete-state active systems operating out of equilibrium. Our results open the door to designing novel
active materials that are not only built to stabilize specific nonequilibrium collective states but are also
optimized to switch between different states at minimum dissipation.
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I. INTRODUCTION

Active matter is a class of nonequilibrium systems where
individual constituents constantly consume energy to
sustain directed motion [1–4]. It encompasses both living
[5,6] and synthetic systems [7–11], which can exhibit
emergent phenomena not found at thermal equilibrium.
Such emergent—collective—properties are plentiful, rang-
ing from the flocking of animals [12–14], active turbulence
[15], and swarming bacteria [16,17], to motility-induced
phase separation (MIPS) that occurs in the absence of
attractive particle interactions [18].
While the collective effects of active matter have been

studied extensively, how to efficiently control active matter
has only recently started to receive growing attention.
Indeed, experiments have now demonstrated the ability
to manipulate active nematics with a magnetic field [19],
trigger spatial phase separation in bacteria [20], guide
rotational patterns in magnetic rotors [21], and drive phase

transitions in living cells [22]. Moreover, the interplay of
external control and activity has been shown to induce
interesting nonlinear behaviors, such as negative mobility,
where optimal protocols could result in novel collective
functions [23]. Thus, the control of active matter opens
unprecedented perspectives on developing novel nonequi-
librium materials that selectively change collective states in
response to perturbations. To this end, a first step is to
establish generic principles for the reliable and optimal
control of active systems.
Previous studies have explored the optimal control of

active systems through the lens of minimal models. Such
works have considered wet one-body control [24–26], one-
body navigation strategies [25,27–30], and more complex
many-body scenarios and field theories [31–35]. In these
works, optimality typically involves penalizing protocols
that steer away from the target state and/or rewards those
finishing in the least time, without any constraint on how
much energy is dissipated. Therefore, how to optimize
control under thermodynamic constraints, such as minimiz-
ing the dissipated heat, is still largely unexplored for active
systems.
For passive systems, recent advances in stochastic

thermodynamics have led to a versatile framework for
control at minimum dissipation [36–42]. In this context, the
operator controls the parameters of a given potential
energy. The corresponding dissipation decreases with
protocol time (Fig. 1), so the slowest protocol is always
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optimal, as expected from the thermodynamics of passive
systems. For passive systems, the control framework
amounts to geometric optimization [36,42]: Optimal tra-
jectories are geodesics on curved manifolds of a thermo-
dynamic metric. The success of this geometric approach
[38,39,41,43,44] fosters the hope that the underlying
framework could also inform control beyond inherently
passive systems. How such a framework can be adapted to
active matter remains to be explored.
Underpinning the geometric approach for optimal con-

trol is linear response theory. It allows one to predict the
effect of a weak perturbation in terms of correlations in the
unperturbed dynamics. For passive systems, the relation
between response and correlation functions follows the
celebrated fluctuation-dissipation theorem [45], which
relies on the time-reversal symmetry (TRS) of the dynam-
ics. Interestingly, such a relation can be straightforwardly
extended when TRS is broken [46,47]. Indeed, it has
already been used to study the response of various active
systems [48–52]. These recent developments establish a
clear roadmap to extend the framework of thermodynamic
control from passive to active systems.
In active systems, the energy consumption of individual

constituents results in a constant rate of heat dissipation.
Then, in contrast with the control of passive systems,
dissipation now stems from two sources: (i) the perturba-
tion by an external operator and (ii) the internal energy
consumption of particles. For a sufficiently large protocol
duration, where the dissipation from the perturbation is
small, the contribution from internal activity is evergrow-
ing. For a sufficiently small protocol duration, the fast
protocol incurs a large dissipation from the large perturba-
tion, as with passive systems. As a result, slow protocols are
no longer optimal for the active case, and now, a finite
protocol duration minimizes the dissipation (Fig. 1).

Therefore, the control of active systems involves not only
finding optimal trajectories at a fixed duration but also
finding which duration achieves the best trade-off between
internal and external dissipation. An important challenge is
then to rationalize how the optimal duration depends on the
interplay between the external perturbation and the inter-
nal drive.
In this paper, inspired by previous efforts on passive

systems, we herein utilize stochastic thermodynamics and
response theory to systematically derive an optimal thermo-
dynamic control framework for active systems. Thus, we
build upon recent developments in and applications of
linear response theory for active systems [48–52] and
nonlinear response theory for driven thermal systems
[53–58]. First, in Sec. II, we present our theoretical
framework for the control of both continuous and discrete-
state active systems. Second, in Sec. III, we show how our
framework can be deployed to inform the control of some
specific model systems. We consider two cases: (i) an
active Ornstein-Uhlenbeck particle confined in a harmonic
trap with varying stiffness and (ii) an assembly of active
Brownian particles with purely repulsive interactions
whose size is varied. In both cases, we obtain the optimal
protocol for the corresponding control parameter, and we
discuss shared implications that the presence of self-
propulsion has on deriving the optimal protocols.
Overall, our results provide a systematic framework to
address the control of active systems and illustrate the main
differences with respect to the control of passive systems.

II. OPTIMAL CONTROL

We propose a systematic recipe for optimizing the
control of active systems. It consists in predicting how
an external operator should vary the parameters of the
potential energy to drive the system between two states at a
minimal cost. We consider the cost function to be the heat
dissipated by the system to a thermal reservoir. Assuming
weak and slow driving, we decompose the heat into speci-
fic correlations and averages, whose dependence on the
control parameter determines the optimal protocol.
Interestingly, the heat always features a minimum at the
protocol time which achieves the best trade-off between
internal and external dissipation (Fig. 1).

A. Thermodynamic cost function

We consider a system of active particles immersed in a
thermal bath at temperature T, where each particle i ¼
f1;…; Ng has an independent self-propulsion velocity vi
that does not depend on position nor on any details of the
protocol. We describe the motion of particles by an over-
damped Langevin equation given as

ṙi ¼ μfi þ
ffiffiffiffiffiffiffi
2D

p
ηi; fi ¼ −∇iϕðα; frgÞ þ vi=μ; ð1Þ

FIG. 1. Illustration of the heat dissipated for a control protocol
with external perturbation in finite time. In passive systems, the
protocol achieving the least dissipation is always the slowest one,
as expected from standard thermodynamics. In active systems,
the optimal protocol instead has a finite duration t�p, which
achieves the best trade-off between the dissipation stemming
from the external perturbation and that coming from internal
activity.
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where ri is the position of particle i, μ is the mobility,
ϕðα; frgÞ is the total potential energy that depends on the
control parameter α and the set of all particle positions frg,
D ¼ μT is the diffusion coefficient (with Boltzmann
constant kB ¼ 1), and ηi is a Gaussian white noise with
zero mean and unit variance. The potential energy can
account for both particle interactions and external fields. In
what follows, the protocol consists in varying αðtÞ from its
initial value α0 ¼ αðt ¼ 0Þ to its final value α1 ¼ αðt ¼ tpÞ
within the duration tp.
For our control problem, we choose the cost function to

be the average heat dissipated into the thermal bath (held at
temperature T) [59–63], defined as

hQi ¼ 1

μ

Z
tp

0

dthṙi · ðṙi −
ffiffiffiffiffiffiffi
2D

p
ηiÞi; ð2Þ

where, unless stated otherwise, we perform a sum over
repeated indices throughout this paper. Hereafter, the dot
product (·) is interpreted within Stratonovich convention, for
which standard rules of differential calculus carry over to
stochastic variables [64]. Substituting the dynamics from
Eq. (1) into Eq. (2), and using the chain rule ṙi · ∇iϕ ¼
ϕ̇ − α̇∂αϕ, we obtain

hQi ¼ hϕ0is − hϕ1i þ
Z

tp

0

dt½α̇h∂αϕi þ hJi�; ð3Þ

where hXis denotes the steady-state average of observableX,
ϕ0 and ϕ1 are the initial and final potential energies,
respectively, and

J ¼ fi · vi: ð4Þ

We have assumed that the system is in a steady state at t ¼ 0,
yet this need not be the case at t ¼ tp. Equation (3) can be
regarded as the extension of the first law of thermodynamics
(namely, the conservation of energy) for active systems
[3,65]. In addition to the potential change hϕ0is − hϕ1i and
the work rate α̇h∂αϕi, which are also present for passive
systems, the heat features the dissipation rate J. In the passive
limit (vi ¼ 0 for all i), J vanishes, and one recovers the first
law of thermodynamics in its standard form.
The self-propulsion term vi=μ in Eq. (1) describes the

force on particle i that results from the conversion of energy
into directed motion. In active systems, such a conversion
involves multiple degrees of freedom, deliberately dis-
carded in our framework, that typically provide additional
contributions to the heat. Other models of active matter
have been proposed that resolve these underlying non-
equilibrium processes [66–70]. Interestingly, for the case
where the chemical reactions between fuel molecules are
always transduced into the motion of the active particle,
any extra dissipation due to the presence of chemical
reactions is only a background contribution, independent

of the potential ϕ. Therefore, all the relevant contributions
to the heat arising from ϕ are already accounted for
in Eq. (3).
In the absence of external control (α̇ ¼ 0), the heat

reduces to the last term in Eq. (3), which scales linearly
with time: hQi ¼ hJistp. Such a scaling illustrates that an
active system, even when at rest, dissipates heat at a
constant rate in order to sustain the self-propulsion of
the particles. For a quasistatic protocol, namely, for pro-
tocol durations much greater than the slowest relaxation
timescale of the system (tp ≫ τmax), α will change more
slowly than any relaxation timescale of the system. Thus,
the system goes through a series of steady states, so all
averages in Eq. (3) are now steady-state averages:

hQi ¼
tp≫τmax

hϕ0is − hϕ1is þ
Z

α1

α0

h∂αϕisdαþ hJistp: ð5Þ

At large times, the heat scales linearly with protocol
duration (Fig. 1).
We are interested in describing corrections to the

quasistatic heat that permit the prediction of optimal control
protocols. To this end, we focus on cases where α varies
weakly and slowly throughout the protocol. Thus, we can
then express the average of a given observable hXi in terms
of the linear (R1) and second-order (R2) response functions
as

hXðtÞi ¼ hXis þ
Z

t

−∞
dt0Δαt;t0R1ðX; t; t0Þ

þ
Z

t

−∞
dt0

Z
t0

−∞
dt00Δαt;t0Δαt;t00R2ðX; t; t0; t00Þ

þOðΔα3Þ; ð6Þ

with the time ordering t ≥ t0 ≥ t00, and where Δαt;t0 ≡
αðtÞ − αðt0Þ is the external perturbation to the control
parameter. The response functions will be explicitly defined
later in Eq. (18). We then expand the perturbation as

Δαt;t0 ¼ α̇ðtÞΔtþ Δt2

2
α̈ðtÞ þOðΔt3Þ; ð7Þ

where Δt ¼ t − t0 is the time increment. The expansions in
Eqs. (6) and (7) are inspired by a previous work on the
control of passive systems [37], although, here, we expand
to higher order in both Δα and Δt. In what follows, we
assume that these expansions are valid at all times within
the protocol duration. This assumption amounts to neglect-
ing any abrupt change in the trajectory of α and also
regarding the averages in Eq. (3) as smooth functions of
time t.
Within this setting, we show in Appendix A that the heat

can be cast as
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hQi ¼ Bðα0; α1; α̇0; α̇1Þ þ
Z

tp

0

dtLðα̇; αÞ; ð8Þ

where α̇0 ¼ α̇ðt ¼ 0Þ and α̇1 ¼ α̇ðt ¼ tpÞ, and we have
introduced the boundary term

B ¼ hϕ0is − hϕ1is þ α̇0Σðα0Þ − α̇1ðΦþ ΣÞðα1Þ

þ
Z

α1

α0

dαΛðαÞ ð9Þ

and the Lagrangian

Lðα̇; αÞ ¼ α̇2ðΨ − Σ0ÞðαÞ − VðαÞ; Σ0 ¼ dΣ=dα: ð10Þ

The functions fV;Φ;Σ;Λ;Ψg are given by

V ¼ −hJis; Φ ¼
Z

∞

0

dtR1ðϕ; t; 0Þt;

Σ ¼ 1

2

Z
∞

0

dtR1ðJ; t; 0Þt2;

Λ ¼ h∂αϕis þ
Z

∞

0

dtR1ðJ; t; 0Þt;

Ψ ¼
Z

∞

0

dtR1ð∂αϕ; t; 0Þt

þ 1

2

Z
∞

0

Z
∞

0

dtdt0R2ðJ; t0; t0 − t; 0Þtt0: ð11Þ

The decomposition of heat in Eqs. (8)–(11) is one of the
central results of this paper. By measuring response
functions and averages at different values of α, one can
systematically construct the dependence of the Lagrangian
L in terms of α and α̇ and deduce the expression of the
corresponding heat for any protocol. Indeed, experimen-
tally measured linear and nonlinear response functions [71]
can be injected into Eqs. (8)–(11) to explicitly determine
the functional dependence of heat on the control parameter.
The optimal protocol readily follows from L by straight-
forward optimization (Sec. II B). Importantly, Eqs. (8)–(11)
hold for any potential ϕ and self-propulsion vi, which
highlights the versatility of our approach.
In the absence of self-propulsion (vi ¼ 0), the

Lagrangian reduces to L ¼ α̇2ΨðαÞ, in agreement with
previous results on controlling passive systems [37]. As
detailed in Sec. II B, the difference in L between active and
passive systems drastically affects the corresponding
dependence of hQi in terms of tp. The heat monotonically
decreases in the passive case, whereas it features a global
minimum in the active case (Fig. 1). Therefore, although
our approach only accounts for leading-order corrections to
the quasistatic regime, it is actually sufficient to capture the
main qualitative change between optimizing either passive
or active matter.

B. Optimal protocol

Our aim is to demonstrate that the heat decomposition in
Eqs. (8)–(11) entails a series of generic properties, both for
the optimal protocol αðtÞ and for the corresponding optimal
heat hQi. Interestingly, we derive such properties without
actually specifying the explicit dependence of the functions
fV;Φ;Σ;Λ;Ψg on α [Eq. (11)]. For an arbitrary potential ϕ
and self-propulsion vi, we then predict how hQi scales with
the protocol time tp, and we provide an approximate
estimation of the value t�p minimizing hQi.
Our derivations essentially rely on drawing an analogy

between the Lagrangian L in Eq. (10) and that of a
harmonic oscillator with position-dependent mass [72].
In that respect, VðαÞ and α̇2ðΨ − Σ0ÞðαÞ, respectively, stand
for the potential and kinetic energies, where the effective
mass Ψ − Σ0 here depends on the control parameter α. In
what follows, we assume that VðαÞ is bounded and ðΨ −
Σ0ÞðαÞ ≥ 0 for all α between α0 and α1, which ensures the
validity of our analogy. The optimal trajectory then obeys
the following Euler-Lagrange equation:

2α̈ðΨ − Σ0ÞðαÞ þ α̇2ðΨ0 − Σ00ÞðαÞ ¼ −V 0ðαÞ: ð12Þ

As in standard Hamiltonian mechanics, one can also
display the optimal trajectory in terms of a first integral
of motion. Multiplying both sides of Eq. (12) by α̇, and
integrating with respect to time t, we get

E ¼ α̇2ðΨ − Σ0ÞðαÞ þ VðαÞ: ð13Þ

The term E is analogous to the total energy in Hamiltonian
mechanics. It is constant throughout the protocol, and it is
constrained by E > maxαV.
We deduce from Eq. (13) a relation between the protocol

trajectory αðtÞ and the protocol speed α̇ðtÞ:

α̇ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − VðαÞ

ðΨ − Σ0ÞðαÞ

s
; ð14Þ

which shows that the optimal trajectory obeys a first-order
ordinary differential equation. This differential equation
can be solved by separation of variables, and it is fully
determined by fE;V;Ψ;Σg. In practice, the constant of
motion E implicitly depends on the initial and final values
fα0; α1g and on the protocol duration tp. Indeed, separating
variables in Eq. (14), and integrating throughout the
protocol, we obtain

tp ¼
�����
Z

α1

α0

dα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΨ − Σ0ÞðαÞ
E − VðαÞ

s �����: ð15Þ

Therefore, combining Eqs. (14) and (15), the solution of the
optimal trajectory αðtÞ follows directly. Although its
explicit expression cannot be given analytically for the
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generic potential ϕ and self-propulsion vi, numerical
integration readily yields αðtÞ for given expressions of
fV;Ψ;Σg and for arbitrary fα0; α1g and tp.
Interestingly, we demonstrate in Appendix B that

Eqs. (14) and (15) are actually sufficient to predict how
hQi scales with protocol duration tp:

hQi ∼
tp≪t�p

Kðα0; α1Þ=tp;

hQi ∼
tp≫t�p

tpmin
α
hJis; ð16Þ

where the expression of Kðα0; α1Þ follows from that of
fΦ;Ψ;Σg [Eq. (B7)]. These scalings correspond to regimes
where the dissipation is dominated either by the external
driving of the control parameter α (namely, for tp ≪ t�p) or
by the internal self-propulsion vi (namely, for tp ≫ t�p). The
former reproduces the scaling expected for passive systems
[37]. The latter agrees with the quasistatic prediction
[Eq. (5)], where here the optimal protocol achieves the
minimum value of hJis, as expected.
In between the regimes of large and small tp, the heat

reaches a minimum at tp ¼ t�p (Fig. 1). The protocol
duration t�p achieves the best compromise between two
regimes of high hQi. By extending the scalings in Eq. (16)
to regimes where tp ≈ t�p, we approximate t�p as the value of
tp where these scalings have the same hQi:

t�p ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðα0; α1Þ=min

α
hJis

q
: ð17Þ

Equation (17) illustrates that t�p sets a trade-off between (i) the
heat due to external drive, involving the system relaxation
through response functions in the definition of Kðα0;α1Þ
[equivalently, in the definition of fΦ;Ψ;Σg; see Eq. (11)],
and (ii) the heat due to internal self-propulsion, involving the
steady-state average hJis. A qualitatively similar trade-off
was reported in a different context for systems combining
autonomous cycles and external drives [73].
In the passive limit (vi ¼ 0), we deduce from Eq. (17)

that t�p diverges. The heat now reaches its minimum
asymptotically at large tp (Fig. 1), and the scaling corre-
sponding to tp ≪ t�p in Eq. (16) now extends to all tp.
Indeed, as expected from the thermodynamics of passive
systems, the protocol with smallest dissipation is always
the slowest, in which case the heat reduces to its quasi-
static value.
Interestingly, when controlling active systems, the boun-

dary term B in Eq. (9) involves the protocol speeds α̇ at
initial and final times, respectively, α̇0 and α̇1. Within our
framework, optimizing the Lagrangian term L already
leads to fixing α̇0 and α̇1 [Eqs. (14) and (15)] for a given
choice of fα0; α1g and tp. To simultaneously optimize B

and L, one could potentially consider abrupt changes in the
protocol trajectory αðtÞ at initial and final times [74]. Yet,
such discontinuous jumps would not be consistent with the
expansions in Eqs. (6) and (7). Therefore, in what follows,
we focus on the optimal trajectory given by Eqs. (14)
and (15).

C. Response functions

We now demonstrate that the response functions in the
heat decomposition of Eqs. (8)–(11) can be expressed in
terms of some specific correlations functions. Indeed,
evaluating response functions generally requires measuring
how the system is affected by weak perturbation, which can
prove difficult both in numerical simulations and in experi-
ments. Instead, our aim is to show that the response is
actually already encoded in spontaneous fluctuations of the
unperturbed dynamics.
In passive systems, the fluctuation-dissipation theorem

enforces generic relations between linear response and
correlation functions [45], and similar types of relations
also exist for the second-order response [55,56,75].
Interestingly, recent works have shown that response-
correlation relations can be extended beyond passive
systems [49] and, in particular, to active matter [48,50–
52]. Here, we explicitly derive such relations for the active
dynamics in Eq. (1).
From the definition of the response functions in Eq. (6)

for a generic observable X, we express R1 and R2 as

R1ðX; t; t0Þ ¼
δhXðtÞi
δΔαt;t0

����
Δα→0

;

R2ðX; t; t0; t00Þ ¼
δ2hXðtÞi

δΔαt;t0δΔαt;t00

����
Δα→0

: ð18Þ

Evaluating the response functions then amounts to predict-
ing how the average hXðtÞi is perturbed when varying the
control parameter α. To this end, we express this average in
terms of a path integral as

hXðtÞi ¼
Z

XðtÞ
Y
i

Pη½ηi�Pv½vi�DηiDvi

× δðṙi − μfiðri; viÞ þ
ffiffiffiffiffiffiffi
2D

p
ηiÞDri; ð19Þ

where Pη and Pv denote the probabilities to observe a given
trajectory for the noise terms ηi and vi, respectively. We
have used the fact that these noises are independent. Using
the fact that Pη is Gaussian, integrating Eq. (19) with
respect to position trajectories frig yields

hXðtÞi ¼ N
Z

XðtÞe−SD½η; v�; ð20Þ
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where D½η; v� ¼ Q
i Pv½vi�DηiDvi, and the normalization

factor is given by 1=N ¼ R
e−SD½η; v�. The term S is the

standard Onsager-Machlup action [76]:

S ¼ 1

4D

Z
tp

0

dtðṙi − μfiÞ2: ð21Þ

Note that, although the dynamics is given in Stratonovich
convention throughout the paper, S does not feature the
term ðμ=2Þ R dt∇i · fi usually given in the Onsager-
Machlup action because the path integral in Eq. (20) is
written with respect to noise trajectories, instead of position
trajectories.
Substituting the path integral of Eq. (20) into Eq. (18),

we deduce

R1ðX; t; t0Þ ¼
Z

XðtÞ δðN e−SÞ
δΔαt;t0

�����
Δα→0

D½η; v�;

R2ðX; t; t0; t00Þ ¼
Z

XðtÞ δ2ðN e−SÞ
δΔαt;t0δΔαt;t00

�����
Δα→0

D½η; v�; ð22Þ

where we have used the fact thatD½η; v� is independent of α
since noise trajectories are not affected by the control
parameter. Then, predicting how S varies with α is a route
to expressing R1 and R2 in terms of correlation functions.
The perturbation α → α − Δα affects the action as
S → S þ ΔS, where

ΔS ¼ 1

4T

Z
tp

0

dt½−2Δαð∇i∂αϕÞ · ðṙi − μfiÞ

þ Δα2ðμð∇i∂αϕÞ2 þ ð∇i∂
2
αϕÞ · ðṙi − μfiÞÞ�

þOðΔα3Þ: ð23Þ

As detailed in Appendix C 1, combining Eqs. (22) and (23)
then leads to

2TR1ðX; t; t0Þ ¼
d
dt0

⟪Xt½∂αϕ�t0⟫ − μ⟪Xt½ð∇i∂αϕÞ · fi�t0⟫:
ð24Þ

The connected correlation ⟪XðtÞYðt0Þ⟫≡ ⟪XtYt0⟫ is
defined for arbitrary observables X and Y as

⟪XtYt0⟫ ¼ hXtYt0 i − hXishYis: ð25Þ

In the absence of self-propulsion (vi ¼ 0), we recover the
celebrated fluctuation-dissipation theorem: R1ðX; t; t0Þ ¼
ð1=TÞðd=dt0Þ⟪XðtÞ∂αϕðt0Þ⟫ for t > t0 [45]. Indeed, this
theorem is readily obtained from Eq. (24) by considering
the time-symmetrized response R1ðX; t; t0Þ − R1ðX; t0; tÞ
and using the time-reversal symmetry of equilibrium
correlations [49] (see Appendix C 1). Similarly, we show
in Appendix C 1 that the second-order response can be
written as

4T2R2ðX; t; t0; t00Þ ¼
d
dt0

d
dt00

hhhXt½∂αϕ�t0 ½∂αϕ�t00 iii þ μ2hhhXt½ð∇i∂αϕÞ · fi�t0 ½ð∇j∂αϕÞ · fj�t00 iii

− μ
d
dt00

hhhXt½∂αϕ�t00 ½ð∇i∂αϕÞ · fi�t0 iii − μ
d
dt0

hhhXt½∂αϕ�t0 ½ð∇i∂αϕÞ · fi�t00 iii − 2Tδðt0 − t00Þ

×

�
d
dt0

⟪Xt½∂2αϕ�t0⟫þ μ⟪Xt½ð∇i∂αϕÞ2 − ð∇i∂
2
αϕÞ · fi�t0⟫

�
; ð26Þ

where the connected correlation hhhXðtÞYðt0ÞZðt00Þiii≡
hhhXtYt0Zt00 iii is defined for arbitrary observables X, Y,
and Z as

hhhXtYt0Zt00 iii ¼ hXtYt0Zt00 i − hXishYt0Zt00 i
− hYishXtZt00 i − hZishXtYt0 i
þ 2hXishYishZis: ð27Þ

The relations in Eqs. (24)–(27), coupled with Eqs. (8)–(11),
are the main relations of this paper. Indeed, they provide
explicit connections between the response functions R1 and
R2, defined for an arbitrary observable X [Eq. (6)], and
correlation functions in the unperturbed dynamics. Similar

linear and nonlinear response relations have been previ-
ously derived in the context of general Markov and non-
equilibrium systems, with specific application to the
Langevin equation and Ising spin variables [53,54]. Our
response relations Eqs. (24)–(27) provide a route to
evaluating response functions resulting from external con-
trol without actually perturbing the system. Overall, we are
now in a position to deploy these relations to the specific
observables that define the response functions of interest
in Eq. (11).

D. Discrete-state dynamics

In this section, we show that our generic framework for
controlling the potential in Eq. (1), corresponding to a
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continuous-state dynamics, can be extended to nonequili-
brium systems with discrete states. To this end, we consider
a generic dynamics that is governed by the following
master equation:

ṗi ¼
X
j

KijðαÞpj; ð28Þ

where piðtÞ is the probability for the system to be in the
state i at time t, andKij is the transition rate to go from state
j to i. The control parameter α determines the expression of
Kij, analogously to how α controls the potential ϕ in
Eq. (1). The average of a given observable X and its time
derivative are expressed as

hXi ¼
X
i

Xipi;

hẊi ¼
X
i

�
piα̇∂αXi þ Xi

X
j

Kijpj

�
; ð29Þ

where Xi is the projection of X over the state i. As for the
continuous-state case, the system is in contact with a heat
bath at temperature T and subject to active driving. In
practice, we consider transition rates with Arrhenius form,
ensuring that the dynamics is thermodynamically consis-
tent [77,78]. Such a transition rate is given by

KijðαÞ ¼ cij exp

�
−
ϕjðαÞ − ϕiðαÞ þ εij

2T

�
; ð30Þ

where cij ¼ cji is the rate amplitude, ϕi is the potential
energy of state i, and εij ¼ −εji is the energy exchange
associated with the active driving.
The heat dissipated into the bath while varying α from α0

to α1, within a time duration tp, reads [79,80]

hQi ¼ T
Z

tp

0

dt
X
i;j

Kijpj ln
Kij

Kji
: ð31Þ

Substituting the definition of the transition rates from
Eq. (30) into Eq. (31), we obtain

hQi ¼ hϕðα0Þis − hϕðα1Þi þ
Z

tp

0

dt½α̇h∂αϕi þ hJi�; ð32Þ

where we have used the definition of averages given in
Eq. (29), and we have introduced the active dissipation rate:

hJi ¼
X
i;j

Kijpjεij: ð33Þ

The first law of thermodynamics in Eq. (32) takes a similar
form as for the continuous-state case in Eq. (3). Therefore,
within the same set of assumptions as in Sec. II A, the

decomposition of heat as the sum of boundary and
Lagrangian term [Eqs. (8)–(11)] remains valid for the
discrete-state case, as with all the results for the optimal
protocol in Sec. II B.
Again, to connect response functions to correlation

functions, as for the case of continuous-state dynamics
(Sec. II C), we rely on a path-integral approach. First, we
define the path weight of a given trajectory ωð½0; tp�Þ,
which goes through a series of discrete states within the
protocol time tp [60,81,82]:

P ¼ N expð−AÞ; ð34Þ

with the normalization factor N . The action A reads

A ¼
Z

tp

0

dt
X
i;j≠i

�
ðKij − K̄ijÞρjðtÞ þ nijðtÞ ln

K̄ij

Kij

�
; ð35Þ

where we have introduced the reference transition rate K̄ij

that does not depend on α. The stochastic density ρjðtÞ is 1
if the trajectory ωð½0; t�Þ goes through the state j at time t,
and 0 otherwise:

ρjðtÞ ¼ δωðtÞ;j; ð36Þ

where δω;j is the Kronecker delta function. The stochastic
transition rate nij is defined as

nijðtÞ ¼
X
λ

δðt − γðλÞij Þ; ð37Þ

where γðλÞij denotes the series of times where the system
jumps from state j to i, each one of them labeled by the
index λ. The variation A → Aþ ΔA due to the perturba-
tion α → α − Δα then follows as

ΔA ¼
Z

tp

0

dt
X
i;j≠i

�
−Δα

∂αðϕi − ϕjÞ
2T

ðnij − KijρjÞ

−
Δα2

2

�
∂
2
αðϕi − ϕjÞ

2T
ðnij − KijρjÞ

− Kijρj
ð∂αðϕi − ϕjÞÞ2

4T2

��
þOðΔα3Þ: ð38Þ

Using the same procedure as that yielding the responses in
the continuous-state case, we show in Appendix C 2 that
the linear response R1 in the discrete case can be written as

2TR1ðX; t; t0Þ ¼
d
dt0

⟪Xt½∂αϕ�t0⟫ − ⟪Xt½K∂αϕ�t0⟫; ð39Þ

and the second-order response R2 follows as
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4T2R2ðX; t; t0; t00Þ ¼
d
dt0

d
dt00

hhhXt½∂αϕ�t0 ½∂αϕ�t00 iii −
d
dt0

hhhXt½∂αϕ�t0 ½K∂αϕ�t00 iii −
d
dt00

hhhXt½∂αϕ�t00 ½K∂αϕ�t0 iii

þ hhhXt½K∂αϕ�t0 ½K∂αϕ�t00 iii − δðt0 − t00Þ
�
2T⟪Xt½K∂2αϕ�t0⟫ − 2T

d
dt0

⟪Xt½∂2αϕ�t0⟫

þ ⟪Xt½Kð∂αϕÞ2 − 2ð∂αϕÞKð∂αϕÞ�t0⟫
�
; ð40Þ

where, for a given observable Y, we have introduced the
notations

KY ¼
X
i;j≠i

KijρjYi; YKY ¼
X
i;j≠i

KijρjYjYi: ð41Þ

Thus, Eqs. (39) and (40) provide explicit relations between
response and correlation functions, which mirror those of
the continuous-state case [Eqs. (24) and (26)] (see also
Refs. [53,54]). Substituting these relations into the expres-
sions in Eq. (11) then allows one to determine the boundary
and Lagrangian terms of the dissipated heat.

III. FROM ONE- TO MANY-BODY CONTROL

We now apply our systematic recipe to the control of
continuous-state systems in specific examples. First, in
Sec. III A, we analytically derive the optimal protocol for
an active particle subject to a harmonic potential whose
stiffness varies. Second, in Sec. III B, we address the case of
an assembly of repulsive active Brownian particles (RABPs)
with a controllable size, which undergoes MIPS at a high
packing fraction.

A. Active particle in a harmonic trap

Having established the main framework, we now test it
on a toy model consisting of a single active particle in a
one-dimensional harmonic trap [Fig. 2(a)]. The motion of
the particle is governed by

ṙ ¼ μf þ
ffiffiffiffiffiffiffi
2D

p
η; f ¼ −αrþ v=μ; ð42Þ

where ϕðα; rÞ ¼ αr2=2 is the trap potential, with α being
the stiffness. For the self-propulsion, we choose the
simplest Ornstein-Uhlenbeck process with hvi ¼ 0 and
hvðtÞvðsÞi ¼ τ−1D1e−jt−sj=τ, where τ is the persistence time
and D1 is the amplitude of the active noise. The heat
[Eq. (3)] associated with varying α from αð0Þ ¼ α0 to
αðtpÞ ¼ α1 reads

hQi ¼ α0
2
hr20is −

α1
2
hr21i þ

Z
tp

0

dt

�
α̇

2
hr2i þD1

τμ
− αhrvi

�
;

ð43Þ
where r0 and r1 are, respectively, the initial and final
positions of the particle. Since the dynamics in Eq. (42) is

linear, the time evolution of the moments hr2i and hrvi is
closed and can be obtained using Itô’s lemma [64] as

1

2

d
dt

hr2i ¼ hrvi − μαhr2i þD;

τ
d
dt

hrvi ¼ D1 − hrvið1þ αμτÞ: ð44Þ

In a steady state, the left-hand side of Eq. (44) is zero,
resulting in

hr2is ¼
1

αμ

�
D1

1þ αμτ
þD

�
; hrvis ¼

D1

1þ αμτ
: ð45Þ

Therefore, the heat given in Eq. (43) can be numeri-
cally measured for a given protocol αðtÞ simply
by simulating the dynamics of the moments in Eq. (44).

FIG. 2. Optimal thermodynamic control of an active particle in
a one-dimensional trap. (a) Illustration of an active particle (blue)
in a harmonic trap. The protocol consists in driving the trap
strength from α0 to α1. (b) Control speed α̇ [Eq. (14)] against trap
strength α for different tp ¼ f0.1τ; 1τ; 5τ; 10τ; 20τ; 100τg.
(c) Protocols for tp ¼ f0.1τ;…; 100τg. (d) Comparing the scaled
heat, where T ¼ D=μ, against protocol duration as approximated
in the response framework (blue) [Eq. (8)] and the exact
expression (orange) [Eq. (43)]. For both curves, we use the
protocols shown in (c). Parameters: μ ¼ 1, D ¼ 1, D1 ¼ 0.01,
τ ¼ 1, α0 ¼ 1, and α1 ¼ 5.
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To evaluate the decomposition of heat [Eqs. (8)–(11)], we use the continuous-state response functions in Eqs. (24) and
(26). We show in Appendix D 1 how to obtain the following expressions:

V ¼ αD1

1þ αμτ
−
D1

μτ
; Σ ¼ D1αμτ

3

ð1þ αμτÞ4 ;

Φ ¼ Dð1þ αμτÞ3 þD1½1þ 3αμτ þ 4ðαμτÞ2�
2ðαμÞ2ð1þ αμτÞ3 ;

Λ ¼ Dð1þ αμτÞ3 þD1½1þ 2αμτ − ðαμτÞ2�
2αμð1þ αμτÞ3 ; ð46aÞ

and

Ψ ¼ D
4α3μ2ðαμτ þ 1Þ5

�
ðαμτ þ 1Þ5 þD1

D
½1þ 5αμτ þ 11ðαμτÞ2 þ 3ðαμτÞ3 − 16ðαμτÞ4�

−
�
D1

D

�
2

ðαμτÞ3½8þ 7αμτ þ 4ðαμτÞ2 þ ðαμτÞ3�
	
: ð46bÞ

In the passive limit (D1 ¼ 0), the expressions reduce to
Ψ ¼ D=2α3μ2, Σ ¼ V ¼ 0, and Λ ¼ αμΦ ¼ D=ð2αμÞ, in
agreement with Ref. [37]. The protocols for changing the
stiffness α of the trap can be readily obtained following the
procedure detailed in Sec. II B. First, we numerically solve
the elliptic integral equation in Eq. (15), which connects the
constant E with the protocol time tp. As E approaches
maxαV (namely, for increasing tp), one needs increasingly
high precision to numerically solve Eq. (15). To this end,
we utilize the arbitrary-precision numerical library Arb
[83], which provides a state-of-the-art numerical integra-
tion procedure based upon adaptive bisection and adaptive
Gaussian quadrature [84]. Second, we obtain the protocol
trajectory αðtÞ by numerically solving Eq. (14), for a given
protocol time tp and boundary conditions fα0; α1g. We
report the results of optimal protocols for different tp in
Figs. 2(b) and 2(c). Very fast (tp ≪ t�p) and very slow
(tp ≫ t�p) protocols collapse onto two separate master
curves. This case is in contrast with the thermodynamic
control of passive systems, where there is only a single
protocol master curve valid for all protocol durations [42].
For the optimal protocols in Fig. 2(c), we then compare

two separate evaluations of heat. We either (i) simulate the
dynamics in Eq. (44) with the optimal protocol and
measure the corresponding heat [Eq. (43)], or (ii) directly
substitute the optimal protocol in the expression of heat
given in Eq. (8), which relies on response theory.
Comparing these two results allows us to delineate the
regime where the response theory is indeed valid. We report
in Fig. 2(d) that the two evaluations of heat match very well
not only at large tp, where the heat scales linearly with tp,
but also in the regime where the heat is minimum (tp ≃ t�p).
At times smaller than t�p, a discrepancy arises, showing that
the assumption of slow driving, underpinning the response
framework, breaks down in this regime.
For a general potential, we expect that the protocol time

at minimum heat t�p increases as the activity becomes

weaker (jvij → 0). For the harmonic case treated here, we
analytically evaluate the approximated estimation of t�p,
which stems frommatching the asymptotic behaviors of the
heat, by substituting Eq. (46) into Eqs. (17) and (B7). This
estimation of t�p captures the divergence t�p ∼ 1=

ffiffiffiffiffiffi
D1

p
at

small activity (D1=D ≪ 1). Interestingly, it also predicts
that t�p should plateau to a finite value at large activity
(D1=D ≫ 1), as shown in Fig. 3.

B. Repulsive active Brownian particles

Having successfully tested our framework on a rather
simple model, we now apply it to a many-body active
system that features richer physics. Specifically, we con-
sider a system of N RABPs in two spatial dimensions that
can exhibit MIPS (Fig. 4) [18]. We take the dynamics in
Eq. (1), with the potential energy given by

ϕ ¼ 1

2

X
i;j≠i

Uij; ð47Þ

FIG. 3. Optimal protocol duration t�p as a function of the active
noise amplitudeD1, as predicted by the scaling relation Eq. (17) in
conjunction with Eq. (46). Parameters: α0=α1¼1=5, μ¼τ¼D¼1.

ACTIVE MATTER UNDER CONTROL: INSIGHTS FROM … PHYS. REV. X 14, 011012 (2024)

011012-9



where the pair potential Uij depends on the interparticle
distance rij ¼ jri − rjj. To impose repulsive interactions,
we take Uij ¼ ε exp½−1=ð1 − ðrij=αÞ2Þ� for rij < α, and
Uij ¼ 0 otherwise. The control parameter α here embodies
the range of the repulsive interaction, which is akin to the
excluded-volume radius. Therefore, changing α at a fixed
number of particles amounts to changing the packing
fraction, which can lead to a transition between homo-
geneous and phase-separated states (Fig. 4). Moreover, we
define the self-propulsion of particle i as

vi ¼ v0ðcos θi; sin θiÞ; θ̇i ¼
ffiffiffiffiffiffiffi
2=τ

p
ζi; ð48Þ

where v0 is the constant magnitude of self-propulsion
speed, and ζi is a Gaussian white noise with zero mean
and unit variance. The persistence time τ, which controls
the angular noise, determines the self-propulsion correla-
tions as hvinðtÞvimð0Þi ¼ δijδnmv20e

−jtj=τ, where n and m
refer to spatial coordinates [85].
Because of the difficulty in deriving analytical expres-

sions for the decomposition of heat [Eqs. (8)–(11)], we
resort to numerically evaluating the corresponding averages
and correlations given in Appendix D 2. We perform
simulations at different particle sizes fαg in the homo-
geneous case (2.1 × 103 < αv=D < 2.4 × 103) and in the
case of phase separation (3.0 × 103 < αv=D < 3.3 × 103).
After obtaining data for various α values, we fit averages and
correlations to deduce their continuous dependence in terms
of α. We then use these fitting functions to obtain the control
protocols by solving Eq. (15), where again we distinguish
protocols for the homogeneous and MIPS cases. In practice,
we consider N ¼ 2000 for RABPs in a square box of side
length L ¼ 200, with periodic boundary conditions to
mimic bulk conditions. The parameters are v ¼ 1, μ ¼ 1,
D ¼ 10−3, τ ¼ 102, and ε ¼ 102T. Considering that length
scales and timescales are, respectively, taken in units of

micrometers and seconds, the parameter values are chosen to
be relevant to actual microswimmers [85], such as moving
bacteria. We integrate the equation of motions [Eqs. (1) and
(48)] using a standard Euler discrete-update rule.
The resulting control protocols are shown in Figs. 5(a)

and 5(b). In the homogeneous case, the control protocols
appear to lie on a single master curve, as for the control of
passive systems [42]. In contrast, for the MIPS case, we
obtain various protocol curves for different protocol dura-
tions tp, which collapse into distinct master curves either
for very fast or very slow protocols. Interestingly, plotting
the control speed α̇ against the value of the control
parameter α reveals that the protocol curves do not actually
collapse onto a single master curve in the homogeneous
case [Fig. 5(c)], although the change in control speed is
clearly smaller than that of the MIPS case [Fig. 5(d)]. Since
the existence of a single master curve is a signature of
passive systems [42], we speculate that RAPBs in the
homogeneous state have macroscopic signatures that
resemble a thermal system, at least as far as the heat
decomposition [Eqs. (8)–(11)] is concerned. Finally, we
compute the heat as predicted from the response framework
[Eq. (8)]. The optimal protocol duration t�p=τ ≈ 1 × 103

in the homogeneous case [Fig. 5(e)] is approximately

FIG. 4. Simulation snapshots of the repulsive active Brownian
particles showing two distinct phases determined by the particle
size α. (a) Small size of particles (αv=D ¼ 2 × 103) resulting in a
homogeneous phase (HOM). (b) Larger size of particles
(αv=D ¼ 4 × 103) leading to MIPS.

FIG. 5. Optimal thermodynamic control of a many-body
system consisting of repulsive active Brownian particles in the
HOM (left) and MIPS (right) cases. (a),(b) Derived protocols for
driving the particle size α as a function of time. (c),(d) Control
speed α̇ against control parameter α. (e),(f) Scaled heat against
protocol duration, computed using protocols shown in (a),(b).
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200 times larger than in the MIPS case, where t�p=τ≈
2 × 105 [Fig. 5(f)]. This difference illustrates that the re-
sponse to changes in particle size is slower in the MIPS
case, where the cluster size adapts to the packing fraction,
than in the homogeneous case.

IV. DISCUSSION

We have derived a thermodynamic framework for the
optimal control of active systems that operate arbitrarily far
from thermal equilibrium. The systematic nature of our
approach relies on recent advances in stochastic thermo-
dynamics and response theory, as inspired by previous
works on the thermodynamic control of passive systems
[36,37]. Applications of our framework have revealed new
insights into the control of active systems that are in direct
contrast to the passive case. Specifically, we have found
that (i) for nonzero activity, expanding the dissipation to
linear order in the protocol duration requires knowledge of
the second-order response, whereas linear response is
sufficient to obtain the same order in the passive case
[37]; (ii) there is a cost (dissipation) associated with the
self-driving, meaning that the optimal duration is not the
longest one, at variance with passive systems [37,43];
(iii) we find that each protocol duration gives rise to a
unique protocol curve, which eventually collapses onto
either a fast or slow master curve, in contrast to the strict
many-to-one mapping as seen in passive control [42,86].
As a demonstration of the generality of our approach, we

have built our framework to describe both continuous and
discrete-state active systems. This opens the door to future
work that may quantitatively compare optimal control
scenarios between these different categories of active
matter. Interestingly, different definitions of irreversibility
and of dissipation have been proposed for various models
of active matter [65,68,69,87,88]. Indeed, the measure of
irreversibility provides a legitimate quantification of dis-
sipation only if the underlying dynamics satisfies specific
thermodynamic constraints. Our results on discrete-state
dynamics can be regarded as a motivation to develop active
discrete-state models that satisfy these constraints thermo-
dynamically. Moreover, our approach could also be adapted
to field theories of active matter [89–91], some of which
can be embedded within linear irreversible thermody-
namics [92]. Furthermore, although we have focused on
optimizing heat, our framework can be straightforwardly
adapted to other cost functions, for instance, the extracted
work (which has been optimized in the literature of passive
systems [37–39,42,74,86,93–97]). Note that a recent study
has considered optimizing the work in active matter by
directly applying the framework of passive systems [98].
Our framework relies on the assumption of weak and

slow driving of the control parameter. It leads to an explicit
decomposition of heat, which can serve as a seed, or a
testing ground, for machine learning approaches beyond

the smooth-driving assumptions [34,99]. Interestingly, one
could extend our framework to take into account corrections
from higher-order responses, and thus to capture faster
driving, within a systematic approach. Moreover, although
we have focused here on controlling a single parameter for
simplicity, it would be interesting to consider an arbitrary
number of control variables in future works. Lastly, encour-
aged by the experimental implementations of the control
framework in passive systems [40,100] and recent progress
in measuring the response of living systems [101–104], our
framework can be readily deployed by experimentalists
to explore the control of experimental active systems.
Indeed, evenwithout knowing the nonequilibrium response-
correlation relation in Sec. II C, our decomposition of heat in
Eqs. (8) and (11) already delineates which perturbation to
apply and which response to measure. We anticipate that
the potential success of applications of our framework will
heavily dependon the quality ofmeasured response functions.
Overall, our work paves the way towards designing active

materials able to optimally switch between collective states.
Indeed, while most studies of active matter focus on
establishing phase diagrams, by associating control para-
meter values with collective states [1,2], how to optimally
induce transitions has remained largely unexplored. While
our framework sets the stage to this end, there remains a
series of open challenges. First, the assumption of slow
driving precludes crossing a critical transition since the
relaxation of the system is always slower than any perturba-
tion at criticality [105]. Considering noncritical transitions
instead, the corresponding order parameter is typically
discontinuous, and so are the averages and correlations in
the heat decomposition. Accordingly, one expects that the
optimal protocol is no longer smooth when crossing phase
boundaries, which challenges the assumption of weak
driving. Therefore, it remains to be explored how the
assumptions underlying the response framework need to
be adaptedwhen switching between collective states in active
matter.
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APPENDIX A: DECOMPOSITION OF HEAT

In this appendix, we derive the decomposition of heat
given in Eqs. (8)–(11). To this end, we assume that the
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control parameter α is varying both weakly and slowly,
which allows us to rely on (i) the representation of averages
in terms of response functions [Eq. (6)] and (ii) the
expansion of the control parameter variation in terms of
time increments [Eq. (7)]. Using these approximations, we
first simplify the averages featured in the heat definition
[Eq. (3)]. We first expand hϕ1i as

hϕ1i ≈ hϕ1is þ
Z

tp

−∞
dt0Δαtp;t0R1ðϕ; tp; t0Þ;

≈ hϕ1is þ α̇1

Z
∞

0

dtR1ðϕ; t; 0Þt; ðA1Þ

where we have used the approximations (i) and (ii) in the
first and second lines, respectively. Similarly, we deduce
h∂αϕi as

h∂αϕðtÞi ≈ h∂αϕis þ
Z

t

−∞
dt0Δαt;t0R1ð∂αϕ; t; t0Þ

≈ h∂αϕis þ α̇ðtÞ
Z

∞

0

dt0R1ð∂αϕ; t0; 0Þt0: ðA2Þ

Finally, hJi follows as

hJðtÞi≈hJisþ
Z

t

−∞
dt0Δαt;t0R1ðJ;t;t0Þ

þ
Z

t

−∞

Z
t

−∞
dtdt0Δαt;t0Δαt;t00R2ðJ;t;t0;t00Þ;

≈hJisþ α̇ðtÞ
Z

∞

0

dt0R1ðJ;t0;0Þt0

þ α̈ðtÞ
2

Z
∞

0

dt0R1ðJ;t0;0Þt02

þ α̇ðtÞ2
Z

∞

0

Z
∞

0

dt0dt00R2ðJ;t0;t0− t00;0Þt0t00: ðA3Þ

In contrast with Eqs. (A1) and (A2), for Eq. (A3) we have
used the second-order response R2, and also the expansion
of Δα up to second order in Δt [Eq. (7)]. These higher-
order corrections are needed for consistency in the overall
expansion of the heat, to leading order in α̇. Substituting
Eqs. (A1)–(A3) into Eq. (3) and then integrating the
second-to-last term in Eq. (A3) by parts, we deduce
the expression of the boundary and Lagrangian terms in
the heat [Eqs. (8)–(11)].

APPENDIX B: SCALINGS OF HEAT

In this appendix, we examine how the heat hQi scales
with the protocol time tp by considering the asymptotic
regimes for fast protocols (tp ≪ t�p) and slow protocols
(tp ≫ t�p), where t�p minimizes hQi (Fig. 1). We rely on the
decomposition hQi ¼ Bþ R

dtL given in terms of the
boundary and Lagrangian contributions [Eqs. (8)–(11)],
respectively, denoted by B and L. Besides, we express L as

L ¼ E − 2V; ðB1Þ

where we have introduced the constant of motion E,
defined in Eq. (13).
First, it appears from Eqs. (14) and (15) that the protocol

duration tp is small whenever the constant of motion E
satisfies E ≫ maxαV. For fast protocols (tp ≪ t�p), we can
then simplify Eqs. (14) and (15) as

E ∼
tp≪t�p

1

t2p

�Z
α1

α0

dα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΨ − Σ0ÞðαÞ

p �
2

;

α̇ ∼
tp≪t�p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ðΨ − Σ0ÞðαÞ

s
: ðB2Þ

Substituting the expression of E into that of α̇, we deduce,
after separating variables and integration, that the optimal
protocol obeys

Z
αðtÞ

α0

dα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΨ − Σ0ÞðαÞ

p
≈

tp≪t�p

t
tp

Z
α1

α0

dα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΨ − Σ0ÞðαÞ

p
;

ðB3Þ

where we have assumed α0 < α1. Therefore, the optimal
trajectory αðtÞ follows a master curve when scaling t with
tp, as for the control of passive systems [37]. Moreover, the
condition E ≫ maxαV yields

Z
tp

0

dtL ∼
tp≪t�p

Etp; ðB4Þ

and we express the boundary term [Eq. (9)], using the
simplified expression of α̇ [Eq. (B2)], as

B ∼
tp≪t�p

ffiffiffiffi
E

p �
Σffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ψ − Σ0p ðα0Þ −
ΣþΦffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − Σ0p ðα1Þ

�
; ðB5Þ

where we have ignored terms that do not depend on tp.
Finally, combining Eqs. (B4) and (B5) with the fact that
E ∼ 1=t2p [Eq. (B2)] results in the first scaling relation for
the heat:

hQi ∼
tp≪t�p

Kðα0; α1Þ=tp; ðB6Þ

where

Kðα0; α1Þ ¼ cðα0; α1Þ
�

Σffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − Σ0p ðα0Þ −

ΣþΦffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − Σ0p ðα1Þ

�
þ cðα0; α1Þ2;

cðα0; α1Þ ¼
Z

α1

α0

dα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΨ − Σ0ÞðαÞ

p
: ðB7Þ
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The term K accounts for contributions from both the
boundary and Lagrangian terms.
Second, we deduce from Eqs. (14) and (15) that the

protocol duration tp is large whenever E ≈maxαV.
Therefore, for slow protocols (tp ≫ t�p), the constant of
motion E depends only weakly on the protocol duration tp.
It follows from Eq. (14) that the protocol speed α̇ðtÞ
depends weakly on tp, and so does the boundary term B
[Eq. (9)]. Plugging the condition E ≈maxαV into Eq. (B1)
and integrating over the protocol results inZ

tp

0

dtL ∼
tp≫t�p

− tpmax
α

V: ðB8Þ

Therefore, we arrive at the second scaling relation for the
heat:

hQi ∼
tp≫t�p

tpmin
α
hJis; ðB9Þ

where we have used V ¼ −hJis.

APPENDIX C: RESPONSE THEORY
FROM PATH PROBABILITY

In this appendix, we show how to explicitly relate
response and correlation functions using a path probability
representation of the dynamics. We consider two cases:
(i) continuous-state dynamics [Eq. (1)] and (ii) discrete-
state dynamics [Eq. (28)].

1. Continuous-state dynamics

The linear response function R1, defined in Eq. (18),
can be written in terms of the dynamic action S
[Eq. (23)] as

R1ðX; t; t0Þ ¼
Z

XðtÞ
�

δN
δΔαt;t0

−N
δS

δΔαt;t0

�
Δα→0

e−SD½η; v�;

ðC1Þ

where N ¼ 1=
R
e−SD½η; v�. Given that

δN
δΔα

����
Δα→0

¼ N 2

Z
δS
δΔα

����
Δα→0

e−SD½η; v�

¼ N



δS
δΔα

�
s

����
Δα→0

; ðC2Þ

we deduce

R1ðX; t; t0Þ ¼
�
hXis



δS
δΔα

�
s
−


XðtÞ δS

δΔαt;t0

��
Δα→0

¼ −



XðtÞ δS

δΔαt;t0

��
Δα→0

; ðC3Þ

where we have used Eq. (25). From Eq. (23), we obtain

δS
δΔα

����
Δα→0

¼ −
1

2T
½ð∇i∂αϕÞ · ðṙi − μfiÞ�

¼ −
1

2T
½∂αϕ̇ − μð∇i∂αϕÞ · fiÞ�; ðC4Þ

where we have used the chain rule ∂αϕ̇ ¼ ṙi ·∇i∂αϕ in the
unperturbed dynamics (namely, at constant α). Finally,
substituting Eq. (C4) into Eq. (C3) yields the expression for
the linear response function

2TR1ðX; t; t0Þ ¼
d
dt0

⟪Xt½∂αϕ�t0⟫ − μ⟪Xt½ð∇i∂αϕÞ · fi�t0⟫;
ðC5Þ

in agreement with Eq. (24). Symmetrizing the linear
response function results in the following:

R1ðX; t; t0Þ − R1ðX; t0; tÞ

¼ 1

2T

�
d
dt0

⟪Xt½∂αϕ�t0⟫ − μ⟪Xt½ð∇i∂αϕÞ · fi�t0⟫

−
d
dt

⟪Xt0 ½∂αϕ�t⟫þ μ⟪Xt0 ½ð∇i∂αϕÞ · fi�t⟫
�
: ðC6Þ

In the passive case (v ¼ 0), the force acting on particles
reduces to fi ¼ −∇iϕ. Besides, time-reversal symmetry
yields ⟪XtYt0⟫ ¼ ⟪Xt0Yt⟫ and ðd=dtÞ⟪Xt0Yt⟫ ¼ −ðd=dt0Þ
⟪XtYt0⟫ for time-symmetric observables X and Y [106].
Causality enforces that R1ðX; t0; tÞ ¼ 0 for t0 < t, from
which we deduce

RðX; t; t0Þ ¼ 1

T
d
dt0

⟪Xt½∂αϕ�t0⟫; ðC7Þ

as predicted by the fluctuation-dissipation theorem [45].
Similarly, we can write the second-order response

function R2, defined in Eq. (18), as

R2ðX; t; t0; t00Þ

¼
Z

XðtÞ
�
N
�

δS
δΔαt;t0

δS
δΔαt;t00

−
δ2S

δΔαt;t0δΔαt;t00

�

−
δN

δΔαt;t00
δS

δΔαt;t0
−

δN
δΔαt;t0

δS
δΔαt;t00

þ δ2N
δΔαt;t0δΔαt;t00

�
Δα→0

e−SD½η; v�: ðC8Þ

Given that
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δ2N
δΔαt;t0δΔαt;t00

����
Δα→0

¼N
�


δ2S
δΔαt;t0δΔαt;t00

−
δS

δΔαt;t0
δS

δΔαt;t00

�

þ 2



δS

δΔαt;t0

�
s



δS

δΔαt;t00

�
s

�
Δα→0

;

ðC9Þ

we deduce

R2ðX; t; t0; t00Þ ¼





XðtÞ
�

δS
δΔαt;t0

δS
δΔαt;t00

−
δ2S

δΔαt;t0δΔαt;t00

����
Δα→0

; ðC10Þ

where we have used Eq. (27). From Eq. (23), we obtain

δ2S
δΔαt;t0δΔαt;t00

����
Δα→0

¼ δðt0 − t00Þ
2T

½μð∇i∂αϕÞ2 þ ð∇i∂
2
αϕÞ · ðṙi − μfiÞ�: ðC11Þ

Finally, substituting Eqs. (C4) and (C11) into Eq. (C10)
yields the expression for the second-order response func-
tion given in Eq. (26).

2. Discrete-state dynamics

We can repeat the above derivation for the case of
discrete-state dynamics. The response functions can be
written in terms of perturbations of the dynamic action A
[Eq. (38)] as

R1ðX; t; t0Þ ¼ −



XðtÞ δA

δΔαt;t0

��
Δα→0

;

R2ðX; t; t0; t00Þ ¼





XðtÞ
�

δA
δΔαt;t0

δA
δΔαt;t00

−
δ2A

δΔαt;t0δΔαt;t00

����
Δα→0

: ðC12Þ

From Eq. (38), we obtain

δA
δΔα

����
Δα→0

¼ 1

2T

X
i;j≠i

½Kijρj∂αϕi − nij∂αðϕi − ϕjÞ�

¼ 1

2T

�X
i;j≠i

Kijρj∂αϕi − ∂αϕ̇

�
; ðC13Þ

where we have used
P

i Kij ¼ 0, which follows fromP
i ṗi¼0 and Eq. (28), and also ∂αϕ̇¼

P
i;j≠inij∂αðϕi−ϕjÞ

in the unperturbed dynamics. Similarly, one can use
Eq. (38) to show that

δ2A
δΔαt;t0δΔαt;t00

����
Δα→0

¼ δðt0 − t00Þ
2T

X
i;j

�
Kijρj

�
∂
2
αϕi −

ð∂αϕj − ∂αϕiÞ2
2T

�

þ nij∂2αðϕi − ϕjÞ
�
: ðC14Þ

CombiningEqs. (C12)–(C14)gives thediscrete-state response
functions in Eqs. (39) and (40).

APPENDIX D: APPLICATIONS OF
THERMODYNAMIC CONTROL

In this appendix, we determine how the generic decom-
position of heat, given in Eqs. (8)–(11) for arbitrary
potential ϕ and self-propulsion vi, translates in two specific
cases. We consider the two examples discussed in the main
text: an active particle in a harmonic trap (Sec. III A) and an
assembly of active particles with purely repulsive inter-
actions (Sec. III B).

1. Control of trap stiffness

In the case of an active particle in a one-dimensional
harmonic trap, we have ϕ ¼ 1

2
αr2 for the potential energy,

yielding ∂αϕ ¼ 1
2
r2, ∇ϕ ¼ αr, and ∇∂αϕ ¼ r. The func-

tions in the decomposition of heat [Eqs. (8) and (11)] then
read

Σ ¼ α

4T

Z
∞

0

dt

�
⟪½rv�t½rv�0⟫t2 − t

�
1
2
þ αμt

�
⟪½rv�tr20⟫

�
;

Λ ¼ 1

2
hr2is þ

α

2T

Z
∞

0

dt

�
⟪½rv�t½rv�0⟫t −

�
1
2
þ αμt

�
⟪½rv�tr20⟫

�
;

Φ ¼ α

4T

Z
∞

0

dt

��
1

2
þ αμt

�
⟪r2t r20⟫ − ⟪r2t ½rv�0⟫t

�
; ðD1Þ

and for Ψ, we have
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Ψ ¼ 1

4T

Z
∞

0

dt

��
1

2
þ αμt

�
⟪r2t r20⟫ − ⟪r2t ½rv�0⟫t − αμt2⟪½rv�tr20⟫

�

þ α

8T2

Z
∞

0

Z
∞

0

dtdt0
�
t0
�
1

2
þ μαt

�
hhh½rv�t½rv�t−t0r20iii þ t

�
1

2
þ μαt0

�
hhh½rv�tr2t−t0 ½rv�0iii

−
�
1

4
þ ðαμÞ2tt0 þ αμðtþ t0Þ

2

�
hhh½rv�tr2t−t0r20iii − αtt0hhh½rv�t½rv�t−t0 ½rv�0iii

�
: ðD2Þ

To obtain expressions for the correlation functions, we first solve the dynamics in Eq. (42) at constant α, resulting in

rðtÞ ¼
Z

t

−∞
dt0e−αμðt−t0Þ½

ffiffiffiffiffiffiffi
2D

p
ηðt0Þ þ vðt0Þ�: ðD3Þ

From this solution, we can write any two-point (unconnected) correlation function. For instance,

h½rv�tr2t0 i ¼
Z

t

−∞
dτ1

Z
t0

−∞
dτ2

Z
t0

−∞
dτ3e

αμð
P

i
τi−t−2t0Þhð

ffiffiffiffiffiffiffi
2D

p
η1 þ v1ÞvðtÞð

ffiffiffiffiffiffiffi
2D

p
η2 þ v2Þð

ffiffiffiffiffiffiffi
2D

p
η3 þ v3Þi

¼
Z

t

−∞
dτ1

Z
t0

−∞
dτ2

Z
t0

−∞
dτ3e

αμð
P

i
τi−t−2t0Þ½hv1vðtÞihv2v3i þ hv1v2ihvðtÞv3i þ hv1v3ihvðtÞv2i

þ 2Dðhv1vðtÞihη2η3i þ hη1η2ihvðtÞv3i þ hη1η3ihvðtÞv2iÞ�; ðD4Þ

where we have introduced the notations ηi ¼ ηðτiÞ and vi ¼ vðτiÞ. We have used the fact that η and v are independent
Gaussian noises with zero mean. Finally, using hηðtÞηðt0Þi ¼ δðt − t0Þ and hvðtÞvðt0Þi ¼ ðD1=τÞe−jt−t0j=τ, one can compute
all the integrals in Eq. (D4). This approach carries over to all the two- and three-point correlation functions in Eq. (D1). It
leads to exact expressions for the decomposition of heat [Eqs. (8)–(11)], given in Eq. (46) for the case of an active particle in
a harmonic trap.

2. Control of particle size

For many-body dynamics with pairwise interactions, the potential takes the form ϕ ¼ P
i;j<i Uij. To compute the

functions in the decomposition of heat [Eqs. (8)–(11)], the following quantities are needed:

A1 ¼
1

2

X
i;j≠i

Uij; A2 ¼
1

2

X
i;j≠i

∂αUij; A3 ¼
X
i;j≠i

vi · ∂riUij; A4 ¼
X
i;j≠i

ð∂ri∂αUijÞ ·
�
μ∂ri

X
k≠i

Uik − vi

�
;

A5 ¼
1

2

X
i;j≠i

∂
2
αUij; A6 ¼

X
i;j≠i

ð∂ri∂2αUijÞ ·
�
μ∂ri

X
k≠i

Uik − vi

�
; A7 ¼

X
i;j≠i;k≠i

ð∂ri∂αUijÞ · ð∂ri∂αUikÞ; ðD5Þ

from which we deduce

V ¼ hA3is;

Φ ¼ 1

2T

Z
∞

0

dt½⟪A1ðtÞA2ð0Þ⟫þ t⟪A1ðtÞA4ð0Þ⟫�;

Σ ¼ 1

4T

Z
∞

0

dt½t⟪A3ðtÞA2ð0Þ⟫þ t2⟪A3ðtÞA4ð0Þ⟫�;

Λ ¼ hA2is −
1

2T

Z
∞

0

dt½⟪A3ðtÞA2ð0Þ⟫þ t⟪A3ðtÞA4ð0Þ⟫�; ðD6Þ

and Ψ can be expressed as
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Ψ ¼ 1

2T

Z
∞

0

dt

�
⟪A2ðtÞA2ð0Þ⟫þ t⟪A2ðtÞA4ð0Þ⟫ −

t
2
ð⟪A3ðtÞA5ð0Þ⟫þ t⟪A3ðtÞA6ð0Þ⟫þ μt⟪A3ðtÞA7ð0Þ⟫Þ

�

−
1

8T2

Z
∞

0

Z
∞

0

dtdt0½hhhA3ðtÞA2ðt − t0ÞA2ð0Þiii þ thhhA3ðtÞA2ðt − t0ÞA4ð0Þiii þ t0hhhA3ðtÞA4ðt − t0ÞA2ð0Þiii

þ tt0hhhA3ðtÞA4ðt − t0ÞA4ð0Þiii�: ðD7Þ
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