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Thermally activated energy-barrier crossing is ubiquitous in physical, chemical, and biological
processes. Most barrier-crossing attempts have insufficient energy to overcome the barrier; hence,
productive transition paths that successfully cross the barrier are very rare compared to nonproductive
fluctuations that enter the barrier region but return without crossing it. Recent experimental advances have
yielded important insights into transition paths, but nonproductive attempts remain little studied
experimentally or theoretically, even though they can reveal information about parts of the reaction
energy landscape not visited during transition paths. Observing the diffusive dynamics of a bead hopping
between bistable optical traps as a model system, we measured the duration, maximum position along the
reaction coordinate, and occupancy statistics of unsuccessful crossing attempts. Experimental results
agreed quantitatively with expectations of an analytical framework we derived from committor theory.
Applying these analyses to a more complex example, DNA hairpin folding under tension, we found that
some properties differed from those of transition paths, such as the asymmetric occupancies for folding and
unfolding attempts, whereas others were similar, such as the diffusion coefficient reflecting landscape
roughness. These results show how nonproductive crossing attempts can be detected and analyzed
rigorously, enabling characterization of the full dynamics within the transition region.
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I. INTRODUCTION

A vast range of processes across the physical and life
sciences involve thermally activated crossing of an energy
barrier, from chemical and enzymatic reactions to transport
processes in condensed matter, crystallization, and protein
folding. As first recognized by Arrhenius over 130 years
ago and later codified more completely by Kramers [1],
successful barrier-crossing events are rare: The great
majority of attempts are unsuccessful, entering the barrier
region but failing to cross all the way over (Fig. 1). Owing
to the obvious importance of the attempts that succeed at
crossing the barrier, almost all efforts at characterizing
reaction trajectories have focused on such productive
“transition paths” (Fig. 1, blue). Transition paths pose a
particular challenge technically because they are both rare
and brief, but they have been studied computationally using
methods for sampling rare events [2] and, more recently,

through direct observation in experiments [3]. Such studies
have led to important insights into properties of transition
paths such as their duration, occupancy, shape, and velocity
profile [4–10]. In contrast, however, the properties of the
nonproductive fluctuations that are associated with unsuc-
cessful crossing attempts (Fig. 1, red) remain almost
completely uncharacterized, as they have been little studied
computationally, experimentally, or theoretically.
Naively, it might seem that there is not much to learn

from studying unsuccessful attempts, precisely because
they are nonproductive. However, nonproductive fluctua-
tions typically explore more of the reaction phase space
than do productive transition paths, and they may thereby
provide new information—not accessible from transition
paths—about the parts of the reaction-defining energy
landscape through which transition paths do not pass
(see Fig. S1 in Supplemental Material [11]). In some cases,
such “off-pathway” behavior may in fact be crucially
important. For example, protein folding reactions often
involve nonproductive fluctuations into incorrect (“mis-
folded”) conformations [12–14]; given that misfolded
proteins can sometimes cause disease [15], characterizing
the properties of unsuccessful folding attempts may provide
key insights into pathogenic misfolding mechanisms.
More generally, studying nonproductive fluctuations in
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addition to transition paths allows for the most complete
characterization possible of the dynamics within the tran-
sition region, for any reaction.
Here, we aim to quantify the properties of nonproductive

attempts at thermally activated crossing of an energy barrier
through direct observation and to develop a framework for
analyzing key observables. Studying first the diffusive
hopping of a bead between bistable optical traps as a
model system for single-barrier reactions [16,17], we
monitor the trajectory of the bead as it fluctuates thermally
within the traps to identify both productive transition paths
crossing from one trap to the other and nonproductive
fluctuations into the barrier region that return to the same
trap from which they start. We characterize the unsuccess-
ful attempts through properties such as their duration,
occupancy distribution, and maximum distance reached
along the reaction coordinate. Deriving analytical expres-
sions for these properties based on committor theory, we
find quantitative agreement with observations, validating
the analysis approach. Finally, we apply this approach to a
more complex system: unfolding of a DNA hairpin held
under tension in optical tweezers [18]. We find that the
occupancy distributions for nonproductive fluctuations of
the hairpin differ from those of transition paths by being
asymmetric, but the conformational diffusion coefficient is
the same as for transition paths. This work shows how
nonproductive barrier-crossing attempts can be measured
directly and their properties analyzed to obtain a more
complete understanding of the dynamics of thermally
activated reactions.

II. RESULTS

A. Bead hopping in a bistable potential

To study thermally activated barrier crossing in a
controlled reaction with a well-characterized energy barrier,
we used diffusive hopping of a micron-scale bead between
bistable optical traps [Fig. 2(a), left]. Similar to previous
work validating Kramers’ classic theory of reaction rates
[16] and theories of transition paths [17], this model system
is ideal for testing theoretical descriptions as it involves
purely Brownian diffusion of a sphere within a known
potential. A single polystyrene bead of radius 410 nm was
held in a pair of traps separated by 0.23 μm. The trap
stiffness (roughly 0.005 pN=nm) was set to obtain a barrier
height of about 2.5 kBT, leading to rates on the order of a
few crossings per second. The bead dynamics were
measured at 1-MHz bandwidth from light scattered onto
a quadrant photodiode to generate trajectories of position as
a function of time [Fig. 2(b)]. Because the bead motions
were driven entirely by thermal fluctuations, the energy
potential created by the traps, UðxÞ, could be quantified (to
within a constant) from the bead position distribution, pðxÞ,
via βUðxÞ ¼ − ln½pðxÞ�, where β is the inverse thermal
energy [Fig. 2(a), right].
The bead trajectories contained multiple transitions

where the bead hopped between the two traps, A and B
(centers of the traps denoted by xA and xB), as well as a
great many nonproductive fluctuations reaching part of the
way into the barrier region between the traps. Defining the
barrier region as the middle two-thirds of the distance
between the two traps, bounded by x1 and x2 [Fig. 2(b),
cyan], we identified those parts of the trajectories passing
from x1 to x2 without first recrossing x1 (or vice versa) as
transition paths, and all those parts looping from x1 towards
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attempts at forward (red) and reverse (orange) reactions fluctuate
into the barrier region but do not cross it. Some nonproductive
fluctuations (dark red) may sample parts of the energy landscape
not explored in transition paths but possibly having different
properties (e.g., greater roughness).
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x2 but returning to x1 before crossing x2 (or vice versa) as
nonproductive crossing attempts. Zooming in on a short
segment of the trajectory [Fig. 2(c)], transition paths are
shown in blue, whereas nonproductive fluctuations are
shown in red (attempts to cross from A to B, hereafter
denoted the forward reaction) or orange (attempts to cross
from B to A, hereafter denoted the reverse reaction).

B. Position distributions for nonproductive fluctuations

We first examined the occupancy distributions for non-
productive fluctuations in the forward and reverse direc-
tions, respectively pðxjNPFFÞ and pðxjNPFRÞ [Fig. 3(a)].
These distributions are constructed by compiling all posi-
tions adopted by nonproductive fluctuations originating
from either state, and they reflect the probability of finding
the bead at x given that it is undergoing a barrier crossing
attempt. As expected, pðxjNPFFÞ [Fig. 3(a), red] dropped
off rapidly as the bead moved away from A and towards B
because higher-energy fluctuations that could reach far into
the barrier region were much rarer than smaller, lower-
energy fluctuations; the same situation held for pðxjNPFRÞ
but in the opposite direction [Fig. 3(a), orange].
To compare the observations to theoretical expectations,

we derived the equilibrium distributions for forward

and reverse fluctuations under the assumption of one-
dimensional (1D) diffusion. Following previous work
[19], we first used the Smoluchowski equation to find
the probability distribution for diffusive trajectories that
start at position x0 in the transition region (x1 < x0 < x2)
and are absorbed at either of the transition-region bounda-
ries. Taking the limit as x0 approaches x1 or x2 then yields
the distribution of points in the transition region for all
trajectories originating, respectively, from the product or
reactant state, which can be separated into those that
terminate at x1 or x2 by multiplying them by one of the
committor functions ΦFðxÞ or ΦRðxÞ, ΦFðxjx1; x2Þ ¼R
x2
x exp½βUðxÞ�= R x2

x1
exp½βUðxÞ� and ΦR ¼ 1 −ΦF, where

ΦFðxÞ describes the probability that a diffusive trajectory
starting at x reaches x1 before x2 (i.e., reaches the product
state before the reactant state) and ΦRðxÞ the reverse.
Multiplying the distribution for trajectories originating
from one state by the probability that they reach the
opposite state first before returning yields the distribution
for transition paths, as derived previously [19] and vali-
dated experimentally [20,21]. Conversely, multiplying the
distribution for trajectories originating from one state by
the probability that they return to that state before reaching
the opposite state yields the position distribution for
unsuccessful forward or reverse reaction attempts:

pðxjNPFFÞ ∝ exp½−βUðxÞ�½ΦRðxjx1; x2Þ�2;
pðxjNPFRÞ ∝ exp½−βUðxÞ�½ΦFðxjx1; x2Þ�2: ð1Þ

To test if the observed position distributions matched
theoretical expectations, we used the potential UðxÞ calcu-
lated from the distribution of all bead positions to determine
the distributions of nonproductive fluctuations via Eq. (1).
We found excellent quantitative agreement with the obser-
vations for both forward and reverse reactions [Fig. 3(a),
blue]; note that this comparison is not a fit but rather a
parameter-free comparison between experiment and theory.
Because the double-well potential was close to symmetric
[Fig. 2(a), inset], pðxjNPFFÞ and pðxjNPFRÞ were close to
mirror images of each other.

C. Maximum extent of nonproductive fluctuations

Next, to quantify the size of the nonproductive fluctua-
tions, we measured the maximum distance each fluc-
tuation reached into the barrier region [Fig. 3(b), inset].
The distributions of maximum distances, pðxmaxjNPFFÞ
and pðxmaxjNPFRÞ, respectively, for forward and reverse
reactions, again showed a sharp drop as the maximum
distance moved away from the boundary towards the other
side of the barrier region [Fig. 3(b), red: pðxmaxjNPFFÞ,
orange: pðxmaxjNPFRÞ].
To find theoretical predictions for these distributions,

we first derived expressions for the rate at which
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nonproductive fluctuations reaching xmax occur. The rate
for transition paths was previously reported as [22]

kðTPFÞ ¼ kðTPRÞ

¼ DR
∞−∞ exp½−βUðxÞ�dx

1R
x2
x1
exp½βUðxÞ�dx : ð2Þ

These rates change as x1 or x2 are moved, owing to
reclassification of transition paths as nonproductive fluc-
tuations or vice versa—for example, barrier crossing
attempts that nearly reach the opposite state before
returning may become transition paths if the opposite state
boundary is brought closer to the center of the transition
region. For a small change Δx in boundary location,
the change in the transition-path rate can therefore be
attributed to the rate at which nonproductive fluctuations
reaching their maximum position within the interval Δx
occur. The rate densities for unsuccessful forward or
reverse reaction attempts reaching their maximum extent
at xmax, kðxmaxjNPFF=RÞ, are then given by the derivative of
Eq. (2) with respect to x1 or x2, respectively,

kðxmaxjNPFFÞ¼
DR

∞−∞ exp½−βUðxÞ�dx
expðβUðxmaxÞÞ

½R x2
xmax

exp½βUðxÞ�dx�2 :

ð3Þ

kðxmaxjNPFRÞ¼
DR

∞−∞ exp½−βUðxÞ�dx
expðβUðxmaxÞÞ

½R xmax
x1

exp½βUðxÞ�dx�2 :

ð4Þ

In principle, normalization by integrating the rate density
over xmax from x1 to x2 yields pðxmaxjNPFF=RÞ. In practice,
however, the analysis is complicated by a singularity: The
distributions are singular at the boundaries [xmax ¼ x2 for
pðxmaxjNPFFÞ and x1 for pðxmaxjNPFRÞ] because, in pure
1D diffusion, there are an infinite number of crossings that
go only an infinitesimal distance into the barrier region.
Experimentally, the finite measurement resolution in time
and space filters out such short fluctuations, as recognized
previously [23], effectively flattening the distribution near
the boundaries. To compare our observations to theory, we
therefore truncated the distribution near the boundary before
fitting to the expressions derived from Eqs. (3) and (4):

pðxmaxjNPRFÞ ∝ exp½βUðxmaxÞ�=
�Zx2

xmax

exp½βUðxÞ�dx
�2

;

ð5Þ

with a corresponding expression for pðxmaxjNPFRÞ.
Treating the normalization constant as a free parameter,
we found excellent agreement with the data [Fig. 3(c), blue]
if we excluded the positions within about 10–20 nm of the

boundary (Fig. S2 in Ref. [11]), suggesting that the finite
sampling effects were significant only within that region.

D. Average nonproductive fluctuation durations

Finally, we examined the duration of the nonproductive
fluctuations, measuring directly from the trajectories the
time spent within the barrier region during such fluctua-
tions [Fig. 4(a), right inset]. The average duration is
theoretically expected to be zero because of the infinite
number of infinitesimal fluctuations in purely diffusive
motion, but it becomes finite owing to experimental
resolution limits [23] and the crossover to ballistic trans-
port at short timescales [24]. The observed distribution of
fluctuation times dropped rapidly but had a long tail
[Fig. 4(a)]. Focusing on the average duration as a function
of the maximum distance reached, τðxmaxÞ, which should
provide a good estimate for those fluctuations large
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enough to avoid experimental filtering effects, we found
that it rose superlinearly as the maximum extent of the
fluctuation increased [Fig. 4(b), red: τðxmaxjNPFFÞ;
orange: τðxmaxjNPFRÞ].
To derive theoretical predictions for τðxmaxjNPFFÞ and

τðxmaxjNPFRÞ, we used the fact that the average duration of
an event is the fraction of time spent on those events
divided by the rate at which they occur [19,25]. The
proportion of time spent on each reaction attempt is given
by the integral of Eq. (1) over the barrier region (normal-
ized to the expected sum of all occupancies):

PðNPFFÞ ¼
R
x2
x1
exp½−βUðxÞ�½ΦRðxjx1; x2Þ�2dxR∞−∞ exp½−βUðxÞ�dx ; ð6Þ

with a corresponding expression for PðNPFRÞ.
Differentiating with respect to the relevant boundary
position (as for the rate densities above) and dividing by
the rate densities then yields the average duration for
nonproductive forward fluctuations reaching the maximum
extent xmax:

τðxmaxjNPFFÞ ¼
2

D

Z
x2

xmax

exp½−βUðxÞ�ΦFðxjxmax; x2Þ

×ΦRðxjxmax; x2Þdx
�Z

x2

xmax

exp½βUðxÞ�dx
�
;

ð7Þ

again with a corresponding expression for reverse fluctua-
tions (swapping x1 for xmax and xmax for x2). Finally, to
account for the experimental overestimation of path times
owing to finite sampling effects [23], we added a linear
offset term t0.
Comparing to the data, we found very good agreement

with Eq. (7) [Fig. 3(d), blue] when excluding data within
about 10–20 nm of the boundary (Fig. S3 in Ref. [11]). This
range is the same as that excluded in the analysis of
pðxmaxjNPFÞ, suggesting that the sensitivity to finite-
sampling effects is similar for τðxmaxÞ. The offset term t0
was about 50–100 μs, suggesting that the overestimation of
average durations due to unobserved barrier recrossing was
only about 1% of the average transition path time for this
system.
Notably, the fit of τðxmaxÞ to Eq. (7) returns the diffusion

coefficient for dynamics in nonproductive fluctuations, D.
Here, we found D ¼ 2.9� 0.1 × 105 nm2=s from the
forward attempts and 2.8� 0.1 × 105 nm2=s from the
reverse attempts. For motion of a spherical bead of radius
R through fluid of viscosity η, we would expect D ¼
kBT=6πηR ¼ 5.5 × 105 nm2=s under the conditions of our
measurements. The observed value is lower, presumably
owing to spatial inhomogeneities in the laser beam intensity
introduced by the acousto-optic deflectors used for position
and stiffness control [26] that generate roughness in the

potential landscape, thereby reducing D [27]; the reduction
of around twofold in D observed here suggests that this
roughness is approximately 0.6 kBT. To test if the value of
D obtained from this analysis is reasonable, we compared it
to the value found from the average transition path time τTP
using exact calculations based on the measured landscape
[19]. The observed value τTP ¼ 9.6� 0.2 ms yielded D ¼
2.91� 0.07 × 105 nm2=s for transition paths, in excellent
agreement with the results from nonproductive attempts.

E. Application to DNA hairpin folding

Having demonstrated a framework for characterizing the
properties of nonproductive fluctuations in a model system,
we next applied it to a more complex reaction: the folding
of a biological macromolecule. Folding reactions are of
significant importance in the life sciences, as biomolecules
must self-assemble into the correct structures in order to
function properly. We focused on the folding of a DNA
hairpin, hairpin 30R50/T4 [28], whose energy-landscape
and transition-path properties have been studied exten-
sively [5,6,8,10,18,29–31]. The hairpin was attached to
kilobase-long handles of double-stranded DNA bound at
each end to beads held in independently controlled optical
traps [Fig. 5(a)]. A constant force was applied to the hairpin
by the traps with a passive force clamp [32], such that the
hairpin unfolded and refolded reversibly in equilibrium.
Measurements of the end-to-end extension of the DNA
construct generated trajectories that were qualitatively
similar to those seen for the hopping bead [Fig. 5(b)] but
now encoding the dynamics of a much richer system.
Identifying the boundaries of the barrier region as for the
bead-hopping measurement, individual nonproductive
attempts at folding (forward reaction) and unfolding (reverse
reaction), as well as productive transition paths, were then
identified directly from the trajectories [Fig. 5(c), red:
folding attempts; orange: unfolding attempts; blue: transi-
tion paths].
As with bead hopping, nonproductive fluctuations domi-

nated the dynamics in the barrier region, but here they
showed different spatial distributions and attempt frequen-
cies for folding versus unfolding [Fig. 5(d) inset, red: folding
attempts; orange: unfolding attempts]. This asymmetry
reflected the asymmetry of the hairpin folding landscape,
where the barrier was much closer to the unfolded state than
the folded state [18]. However, the presence of the handles
and beads—whose own fluctuations, independent of the
hairpin dynamics, also contributed to the fluctuations
observed in the trajectories—complicated the picture. To
assess the contributions from the beads and handles, we
analyzed pðxmaxÞ (the distribution of maximum fluctuation
extent) from a reference construct containing the same
handles but no hairpin (Fig. S4 in Ref. [11]) and then
compared our results to the results from the hairpin construct
[Fig. 5(e), red: folding attempts; orange: unfolding attempts;
gray: bead and handle fluctuations]. The bead and handle
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fluctuations were significant close to the boundaries x1 and
x2, but hairpin fluctuations dominated beyond around 4 nm
into the barrier region, confirming that we were indeed
observing unsuccessful folding and unfolding attempts in
those parts of the barrier. Nevertheless, the contributions of
the bead and handle fluctuations led to relatively poor
agreement between the observed occupancy distributions
pðxjNPFFÞ and pðxjNPFUÞ (respectively, for folding and
unfolding) and the results expected from the measured
landscape (Fig. S5 in Ref. [11]).
These results showed that nonproductive attempts could

indeed be detected in constant-force measurements.
However, owing to low effective trap stiffness, the time
resolution was insufficient to capture the dynamics of these
fluctuations reliably, as seen previously in studies of
transition paths at constant force [5,33]. We therefore
remeasured the hairpin and reference constructs at non-
constant force with high trap stiffness. Individual attempts
at folding [Fig. 6(a), red] and unfolding [Fig. 6(a), orange],
as well as transition paths [Fig. 6(a), blue] were identified
as above. The distributions pðxjNPFFÞ and pðxjNPFUÞ
were still asymmetric [Fig. 6(b)], but the effects of the
beads and handles were more prominent [Figs. 6(c) and S6]
owing to the reduction in the folding length change arising
from compliance corrections [32]. Unfolding attempts
could be reliably distinguished from bead and handle
motions only for the largest fluctuations, those reaching

over 70%–80% of the way across the barrier region,
and folding attempts could not be distinguished at all
[Fig. 6(d)]. Within the restricted range where the fluctua-
tions could be reliably identified as molecular, however,
their dynamics could be probed.
Considering first the duration of fluctuations reaching at

least 80% of the way across the barrier region [Fig. 6(e)], it
differed from the distribution in Fig. 4(a) because the
shortest-duration fluctuations were precluded by the
requirement that all fluctuations have a minimum size.
Expanding the distribution to include all fluctuations
[Fig. 6(e), inset], we recovered the qualitatively expected
shape but of course no longer excluding the many fluctua-
tions arising purely from the beads and handles. The
average duration of fluctuations reaching a given distance,
τðxmaxÞ, was more instructive [Fig. 6(f)] because it could be
fit to Eq. (7) to determine D. Owing to the influence
of the bead and handle fluctuations still being felt within
much of this region, we restricted the fit to the six points
furthest from x1. The fit [Fig. 6(f), dashed line] returned
D ¼ 2.7� 0.2 × 105 nm2=s, similar to the average value
2.4� 0.2 × 105 nm2=s obtained for this hairpin from
analyses of different transition-path properties [6]. The
observed average durations became progressively shorter
than expected from this fit as xmax moved closer to x1, the
trend expected if the average were increasingly being
biased by bead and handle fluctuations, which are faster.
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Treating the bead and handle fluctuations as a second
population with higherD in a two-component fit to τðxmaxÞ,
where the relative population occupancies of molecular vs
bead and handle fluctuations were given by Fig. 6(d), we
found excellent agreement across the whole region being
analyzed [Fig. 6(f), cyan]; the value ofD for the hairpin was
unchanged in this fit, and the value for bead and handle
fluctuations (D ¼ 4.8� 0.1 × 105 nm2=s) also matched
previous results [34].

III. DISCUSSION

The basic framework for describing the thermally
activated barrier crossing proposed by Arrhenius—the
notion that the rate is given by a prefactor (k0, often
interpreted as a basal attempt frequency) that is suppressed
exponentially by the barrier height (ΔG‡) according to the
relation k ¼ k0 expð−βΔG‡Þ—has remained at the core of
kinetic theories for over 130 years. However, the non-
productive fluctuations reflecting the vast majority of
attempts at barrier crossing have been all but ignored
experimentally to date. Our work shows that with sufficient

resolution in time and space along the reaction coordinate,
it is possible to detect individual unsuccessful attempts at
barrier crossing even in complex reactions like biomolec-
ular folding. Furthermore, we provide a theoretical frame-
work for analyzing the properties of nonproductive
fluctuations. Such measurements and analyses allow access
to the full dynamics within the barrier region, exploring a
wider region of the energy landscape than in transition
paths alone and yielding fundamental descriptors of the
dynamics in these new regions, such as the diffusion
coefficient.
One issue illuminated by these measurements is the

meaning of the exponential prefactor in kinetic theories.
This prefactor is often described as an “attempt frequency”
for barrier crossing. Whereas such an interpretation is valid
in the context of transition state theory, where the prefactor
is equal to the number of reaction attempts per unit time, it
is not so for the Kramers’ theory prefactor, which, despite
its units of inverse time, cannot be interpreted as an
attempt rate. In the case of the bead-hopping measurements
described above, for example, the Kramers prefactor [given
by βDðκwκbÞ1=2=2π, where κw and κb are the stiffness of the
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potential well and barrier, respectively] is 40� 2 s−1 for
the forward reaction and 42� 2 s−1 for the reverse reac-
tion. These prefactor rates are orders of magnitude smaller
than the attempt frequencies observed experimentally:
1278� 4 s−1 (forward) and 1280� 5 s−1 (reverse), which
themselves represent an underestimate owing to resolution
limitations [23]. In contrast, the rates for productive barrier
crossings (i.e., transition paths) predicted by Kramers’
theory (2.8� 0.2 s−1 forward, 4.9� 0.2 s−1 reverse) agree
well with those observed experimentally (3.3� 0.2 s−1
forward, 5.6� 0.4 s−1 reverse). This comparison high-
lights the sometimes overlooked point that Kramers’ rate
predictions should not be interpreted as an attempt fre-
quency prefactor suppressed by an exponential barrier
height term, as the Kramers’ prefactor also incorporates
effects like diffusive barrier recrossing. On the other hand,
the experimentally observed attempt rates are defined by
how often the boundaries defining the transition region—
rather than the barrier—are crossed; since the vast majority
of reaction attempts reach only a small distance into the
barrier region, the observed attempt rates will depend most
strongly on the boundary positions and the shape of the
energy landscape nearby.
We found very close agreement between experiment and

theory for the properties of nonproductive fluctuations in
simple bead-hopping dynamics, as would be expected for
an ideal model system. The comparison of experiment to
theory was more difficult for the nonproductive attempts at
hairpin unfolding and refolding, however, because of the
artifacts introduced by the dynamics of the beads and
handles used to apply force to the hairpin. We were
nevertheless able to isolate parts of the barrier region
where molecular fluctuations could be reliably identified.
Ideally, to best distinguish molecular fluctuations from
bead and handle fluctuations, the latter should have a
distribution that is narrow compared to the width of the
barrier region, achieved by maximizing the stiffness of the
handles and beads while minimizing compliance correc-
tions for the unfolding distance; in concert, the bead size
should be minimized to maximize the time resolution of the
measurement [35]. However, some of these requirements
may conflict (e.g., small beads are less stiff, and higher trap
stiffness can induce larger compliance corrections), leading
to the need for technical compromises.
The analysis of nonproductive fluctuations presented

here could, in principle, be extended to include other
properties that have been analyzed for transition paths,
such as local velocity distributions and average fluctuation
shapes [6,8]. Pauses in the fluctuations could be analyzed to
detect and characterize ubiquitous micro-wells within the
barrier region [10] or more persistent kinetically trapped
states, such as those that can occur in protein misfolding
[12–14]. One property that could be particularly interesting
is the diffusivity (position-dependent diffusion coefficient)
DðxÞ, which reflects local roughness in the energy

landscape. Diffusivity is expected to be constant in reac-
tions like bead hopping over a smooth landscape, but it
is known to vary in more complex reactions such as
folding [36,37], although the position dependence is
difficult to measure [38]. Transition-path pauses provide
one avenue to access DðxÞ [10], but nonproductive
fluctuations should provide another: Because these fluctu-
ations can be classified by their maximum extent (unlike
transition paths), incremental changes in τðxmaxÞ can be
analyzed as xmax changes to detect variations in D. Most
importantly, such an analysis could report DðxÞ for regions
of the landscape that are not visited in transition paths and
would be especially meaningful in cases like protein
misfolding, given that diffusion can be much slower for
misfolding than native folding [39] and henceDðxÞmay be
depressed in regions of the landscape featuring notable
amounts of misfolding.

IV. CONCLUSION

We demonstrated direct measurements of nonproductive
attempts at thermally driven barrier crossing, both in a
model system of diffusive bead hopping and in a more
complex system of biomolecular folding. We also devel-
oped tools for analyzing these nonproductive fluctuations,
quantifying properties such as their occupancy, maximum
extent, and duration in ways that characterize fundamental
descriptors of the dynamics such as the diffusion coeffi-
cient. This work provides a comprehensive approach for
detecting and characterizing nonproductive attempts at
barrier crossing, offering a more complete picture of
barrier-crossing dynamics.

V. METHODS

A. Bead-hopping measurements

Two optical traps were created from a 1064-nm diode-
pumped solid-state laser by separating the beam into
independent polarizations. The positions and intensities
of each trap beam were controlled independently by
acousto-optic deflectors to generate potential wells sepa-
rated by 234 nm. A single 820-nm diameter polystyrene
bead was held in the traps, and its position was monitored
from laser light scattered onto quadrant photodiodes (First
Sensor). Data were sampled at 1 MHz and filtered online at
the Nyquist frequency with an 8-pole Bessel filter. A total
of 145 s of hopping was measured. Data were collected
with Labview 2018 software. The trap stiffnesses, mea-
sured from the variance of the bead position and the roll-off
frequency of the noise power spectral density [40], were
0.0053� 0.0002 pN=nm for the left well and 0.0051�
0.0002 pN=nm for the right well.

B. Analysis of bead hopping

The energy landscape for bead hopping, found from an
inverse Boltzmann transform of the bead-position
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probability distribution pðxÞ with a bin size of 0.31 nm,
was used to define the boundaries of the barrier region as
the middle 2=3 of the distance between the well centers.
Individual transition paths and nonproductive fluctuations
were isolated from the trajectories by extracting the seg-
ments lying within the barrier region, as well as the points
immediately following or preceding those in the barrier
region; segments whose start and end points were on the
same side of the barrier region were classified as non-
productive fluctuations, whereas segments whose start and
end points were on opposite sides were classified as
transition paths.
Occupancy distributions for nonproductive fluctuations

were calculated directly from the isolated segments of the
trajectories. The maximum extension reached into the
transition region during unsuccessful attempts was found
by detecting the lowest (highest) x value reached within the
barrier region for each forward (reverse) crossing attempt.
The duration of each transition path and nonproductive
fluctuation was found from the trajectories by measuring
the length of time spent within the barrier region; when the
barrier boundary was crossed between sampling points, the
crossing time was calculated by linear interpolation
between the points straddling the boundary.
Fitting of pðxmaxjNPFF=RÞ to Eq. (5) was done while

dividing by a constant to act as a normalization factor. To
account for artifacts near the proximal boundary (x1 or x2),
we omitted the points nearest the boundary from the fitting
until the fit passed a χ2 test as well as a Kolmogorov-
Smirnov test for residual normality, both at the 95% con-
fidence level (Fig. S2 in Ref. [11]); the four points closest to
x2 were omitted for the forward reaction, whereas the seven
points closest to x1 were omitted for the reverse reaction.
When fitting τðxmaxÞ to Eq. (7), we followed the same
procedure of omitting the points nearest the boundary until
the fit passed both the χ2 and Kolmogorov-Smirnov tests
(Fig. S3 in Ref. [11]); here, the five points closest to x2 were
omitted for the forward reaction, whereas the three points
closest to x1 were omitted for the reverse reaction. To
account for any uncertainty introduced during this process,
the error in D was estimated as the average difference
between the values obtained as above and the values
obtained by omitting either two or seven points closest
to the originating boundary, representing the range of point
omissions required for one of the two tests to pass in all fits.
All fits were performed in MATLAB 2021A using the trust
region reflective method.

C. Hairpin fluctuation measurements

Samples containing DNA hairpin 30R50/T4 from
Ref. [28] connected to double-stranded (ds) DNA were
prepared as described previously [10]. Briefly, a DNA
oligomer containing the hairpin sequence separated by
abasic sites from a 5′ ligation overhang and a 3′ primer
sequence was used to generate an 801-bp dsDNA handle

with the hairpin attached to one end via autosticky
polymerase chain reaction (PCR). This PCR product was
then ligated via the 5′ overhang to a 1260-bp dsDNA handle
with a complementary overhang. The resulting product was
incubated at about 100 pM concentration to 600- and 820-
nm diameter polystyrene beads (about 250 pM), which
bound to the hairpin construct via biotin:avidin and digox-
igenin:anti-digoxigenin pairs to produce “dumbbells” for
trapping. Dumbbells diluted to about 500 fM in 50 mM
MOPS, pH 7.0, with 200 mM KCl and an oxygen scav-
enging system (8 mU=μL glucose oxidase, 20 mU=μL
catalase, 0.01% w/v D-glucose) were inserted into a sample
cell for trapping.
Hairpins were measured in a dual-beam optical trap

described previously [10]. Constant-force measurements
were done using a passive force clamp [32], adjusting the
power of the zero-stiffness trap holding the 600-nm bead
until the hairpin spent approximately equal amounts of time
in the folded and unfolded states. Data were sampled at
1 MHz and filtered online at the Nyquist frequency with an
eight-pole Bessel filter, with the nonzero trap stiffness set to
about 0.4 pN=nm. Constant-force trajectories lasting a total
of 106 s were measured from four hairpin molecules.
Trajectories at nonconstant force were measured by setting
the trap stiffnesses to about 1.0 and 0.6 pN=nm, and then
moving the traps apart until the hairpin fluctuated between
folded and unfolded states at roughly equal rates. Data were
sampled and filtered as above. Nonconstant force trajecto-
ries lasting a total of 758 s were measured from seven
hairpin molecules.
To measure the effect of handle and bead fluctuations,

reference constructs consisting of the dsDNA handles and
single-stranded linker regions (but lacking the hairpin)
were prepared, similar to the hairpin constructs. The
reference construct was measured identically to the hairpin
under constant-force and nonconstant-force conditions. For
comparison to constant-force measurements, the reference
construct was held at the unfolding force of the hairpin,
F1=2 ¼ 13.9� 0.2 pN [28]; trajectories lasting a total of
158 s were measured from four molecules. For comparison
to nonconstant-force measurements, the reference construct
was measured at two forces to mimic the different forces
experienced by the hairpin under these conditions: the force
in the folded state, FF ¼ 16.1� 0.2 pN (trajectories lasting
a total of 140 s from three molecules), and the force in the
unfolded state, FU ¼ 11.1� 0.2 pN (trajectories lasting a
total of 88 s from three molecules).
The instrument response time under the conditions used

for high-stiffness measurements of hairpin 30R50/T4 has
been characterized previously, via (1) the relaxation time of
the reference (handle-only) construct after abruptly chang-
ing the distance between the traps, yielding 6� 1 μs for
jumps equivalent to the extension change for hairpin
unfolding [5]; and (2) the decay constants for the auto-
correlation function [34] and power spectral density [5]
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calculated from extension fluctuations within the wells,
both around 9 μs. The relaxation time approach is the most
directly related to the measurement. Noting that, when
responding to a change in extension, the beads will move to
their new position faster when the distance change is
smaller (an issue relevant to nonproductive fluctuations
because of their variable length), we estimated the response
time for fluctuations of different size by dividing the
relaxation time by the extension change, finding about
0.4 μs=nm. For constant-force measurements of hairpin
30R50/T4, the response time was previously characterized
via the autocorrelation decay time [34] to be around
40 μs, roughly 4–5 times slower than in the nonconst-
ant-force measurements.

D. Analysis of hairpin folding

The barrier region was defined exactly as for the bead-
hopping experiments, and the transition paths and non-
productive fluctuations were also identified as above, using
the end-to-end extension of the molecule (instead of the
bead position) as the reaction coordinate. In order to obtain
good statistics for the rare fluctuations reaching far into the
barrier region, the trajectories from all molecules measured
under a given condition (constant force or high stiffness)
were pooled together for analysis; to account for minor
differences in length calibration between molecules, the
extension values for each molecule were scaled so that the
unfolding distance of each hairpin matched the aver-
age value.
Hairpin data were analyzed similarly to bead-hopping

data. Because handle/bead fluctuations affect the extension
probability distribution, the energy landscape for hairpin
folding was found using committor reconstruction [31]
rather than inverting the Boltzmann distribution. This
method provides a reasonable approximation for this
hairpin even though it is not strictly correct [41]. Briefly,
ΦRðxÞ was calculated directly from the trajectory and the
landscape derived from βUðxÞ ¼ ln½−dΦRðxÞ=dx�; to
reduce noise from numerical differentiation, a smoothing
spline with a smoothing factor of 0.8 was applied to the
result. To assess the fluctuations arising from beads/
handles, mock measurements of the reference construct
lacking hairpin were used. “Boundaries” mimicking x1 and
x2 were placed at the same distance from the average
reference extension as they were from the folded and
unfolded states of the hairpin, respectively, and the handle/
bead fluctuations mimicking nonproductive attempts were
identified as for the hairpin data (Figs. S4 and S6). The
probability distribution that the observed fluctuations
reaching a certain distance were due to hairpin motions
was calculated by dividing the maximum extension dis-
tribution of the hairpin by the sum of the maximum
extension distributions of the hairpin and handle construct.
All fits were performed in MATLAB 2021A using the

trust region reflective algorithm. To estimate the effect

of the handle/bead fluctuations on τðxmaxÞ, we
modified Eq. (7) to include a component from
motions of the handles/beads as well as the hairpin,
replacing the constant D with a position-dependent
version DðxmaxÞ ¼ DHB þ phpðxmaxÞ½Dhp −DHB�, where
Dhp is the diffusion coefficient for the hairpin, DHB is
the handle/bead diffusion coefficient, and phpðxmaxÞ is the
probability that fluctuations reaching a maximum exten-
sion xmax arose from hairpin dynamics. To estimate the
error on D from the hairpin data, an uncertainty of about
1 kBT was assumed for the barrier height based on
previous work [31], and the data were refit in a boot-
strapping analysis while scaling the energy landscape by
the resampled barrier height, taking the standard deviation
from 500 resamplings as the error in D.

Data supporting the findings in this work have been
deposited in Figshare [42].
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