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Active systems are composed of constituents with interactions that are generically nonreciprocal in
nature. Such nonreciprocity often gives rise to situations where conflicting objectives exist, such as in the
case of a predator pursuing its prey, while the prey attempts to evade capture. This situation is somewhat
reminiscent of those encountered in geometrically frustrated systems where conflicting objectives also
exist, which result in the absence of configurations that simultaneously minimize all interaction energies.
In the latter, a rich variety of exotic phenomena are known to arise due to the presence of accidental
degeneracy of ground states. Here, we establish a direct analogy between these two classes of systems. The
analogy is based on the observation that nonreciprocally interacting systems with antisymmetric coupling
and geometrically frustrated systems have in common that they both exhibit marginal orbits, which can be
regarded as a dynamical system counterpart of accidentally degenerate ground states. The former is shown
by proving a Liouville-type theorem. These “accidental degeneracies” of orbits are shown to often get
“lifted” by stochastic noise or weak random disorder due to the emergent “entropic force” to give rise to a
noise-induced spontaneous symmetry breaking, in a similar manner to the order-by-disorder phenomena
known to occur in geometrically frustrated systems. Furthermore, we report numerical evidence of a
nonreciprocity-induced spin-glass-like state that exhibits a short-ranged spatial correlation (with stretched
exponential decay) and an algebraic temporal correlation associated with the aging effect. Our work
establishes an unexpected connection between the physics of complex magnetic materials and nonrecip-
rocal matter, offering a fresh and valuable perspective for comprehending the latter.

DOI: 10.1103/PhysRevX.14.011029 Subject Areas: Condensed Matter Physics, Soft Matter,
Statistical Physics

I. INTRODUCTION

There is a current surge of interest in the physics
of nonreciprocally interacting active systems [1,2].
Nonreciprocal interaction refers to an asymmetry in the
interaction between two or more entities in which the action
and reaction are not equal. This phenomenon arises
generically whenever the system is coupled to a non-
equilibrium environment, and is, therefore, ubiquitous in
nature [3–26]. The importance of nonreciprocal interaction
has been extensively acknowledged in various scientific
disciplines, ranging from active matter [3–11], ecology
[12–17], social science [18], neuroscience [19–22], and

robotics [23], to open quantum systems [24–27]. More
recently, researchers have found that nonreciprocal inter-
action significantly impacts the collective behavior of
many-body systems [9–11,26,28–33]. The effects include
the emergence of odd elasticity [10,33], nonreciprocal
phase transitions [11,28,29,34], and long-ranged order in
two spatial dimensions [31,32].
In the presence of nonreciprocal interactions, conflict-

ing objectives often arise. As a simple example, consider a
case where agent A attracts agent B while B repulses A.
In such a situation, no configurations can satisfy both
agents, as A seeks to be close to B while B desires the
opposite. This situation is, to some extent, analogous to
situations encountered in geometrically frustrated sys-
tems. Geometrically frustrated systems are defined as
systems that cannot satisfy the constituents’ “desire” to
minimize all interaction energy at every bond [35,36].
[See Figs. 1(a1) and 1(b1) for a typical example of a
frustration-free and geometrically frustrated system,
respectively.] In other words, these systems do not have
any configurations that can make all constituents “happy”
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simultaneously, similar to the situation in nonreciprocally
interacting systems. This means that at least some con-
stituents must compromise for global optimization. As
there can be many ways to achieve this, geometrical
frustrated systems often exhibit accidentally degenerate
ground states [Figs. 1(a2) and 1(b2)]. This not only makes
the system extremely sensitive to external perturbations

but also gives rise to various exotic phenomena, such as
order-by-disorder phenomena (OBDP) [37–41], spin glass
[42–48], spin ice [49], and quantum [50] and classical
[39,40] spin liquids, in and out of equilibrium [51–55].
This raises the question of whether nonreciprocally

interacting systems can also give rise to phenomena similar
to those induced by geometrical frustration. Phrased
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FIG. 1. Geometrical and nonreciprocal frustration and the emergence of “accidental degeneracy” of orbits. (a1)–(c1) Examples of
systems with (a1) no frustration, (b1) geometrical frustration, and (c1) antisymmetric nonreciprocal interactions. (a2),(b2) Schematic
description of energy E as a function of the spin configuration fθjg. Here, EG is the ground state energy and we have omitted the
degeneracy that trivially arises from the global rotation symmetry, for clarity of the figure. Note that the energy E is not defined for the
nonreciprocal case. (a3)–(c3) Orbits. (a4)–(c4) Lyapunov exponents λ. (a) In frustration-free systems, since fixing the angle of one spin
would determine all other spin configurations to minimize the energy of the system, the ground state is unique up to global symmetry. As
a result, the system converges into a unique stable fixed point [red point in (a3)], which gives negative Lyapunov exponents λ < 0.
(b) Geometrically frustrated systems, on the other hand, often exhibit accidentally degenerate ground states because of the
underconstrained degrees of freedom. The presence of the degenerate ground states implies that there is a direction in which a
restoring force (torque) is absent. This means that the accidentally degenerate ground states correspond to marginal fixed points in the
language of dynamical systems [blue line in (b3)] that have zero Lyapunov exponent(s) λ ¼ 0. (c) In nonreciprocally frustrated systems
with perfect nonreciprocity Jij ¼ −Jji, the spins start a chase and run away motion that corresponds to marginal orbits with zero
Lyapunov exponents λ ¼ 0, arising due to the Liouville-type theorem [Eq. (3)]. These orbits can be regarded as the dynamical
counterpart of the ground state accidental degeneracy of geometrically frustrated systems that also have zero Lyapunov exponents λ ¼ 0.
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differently, is there a counterpart of accidentally degenerate
ground states in nonreciprocal systems that were the origin
of these exotic phenomena? At first glance, it seems highly
unlikely, due to a crucial difference from geometrically
frustrated systems: the absence of the notion of energy in
nonreciprocal systems [11]. Consequently, accidentally
degenerate ground states cannot be defined. Moreover,
nonreciprocally interacting agents typically start a “chase
and run away” motion that cannot be described in terms of
energy minimization [Fig. 1(c1)], unlike in geometrically
frustrated systems where they settle in a compromised
configuration. As such, the two types of frustration appear
to have no further connection in their phenomenology
beyond the vague resemblance mentioned earlier.
Despite these fundamental differences, in this paper, we

establish a direct analogy between the two types of
frustration. This is achieved by pointing out a crucial
common feature shared between geometrically frustrated
systems and nonreciprocally interacting systems with anti-
symmetric coupling: the presence of marginal orbits char-
acterized by zero Lyapunov exponents that do not originate
from symmetry [see Figs. 1(a3)–1(c3) and 1(a4)–1(c4)]. In
the case of geometric frustration [Fig. 1(b1)], the acciden-
tally degenerate ground state [Fig. 1(b2)] corresponds to
marginal fixed points [Fig. 1(b3)] in the dynamical system
language. The presence of marginal orbits in nonreciprocally
interacting cases, on the other hand, is supported by a
Liouville-type theorem that holds in the antisymmetric
coupling limit. In contrast to the marginal fixed points in
the geometrically frustrated systems, the marginal orbits in
the nonreciprocal systems are generally time dependent
[Fig. 1(c3)], reflecting their nonequilibrium nature. The
emerging marginal orbits in the latter can therefore be
viewed as the dynamical counterparts of the accidentally
degenerate ground states.
We show that these “accidentally degenerate” orbits

often get “lifted” by stochastic noise or quenched disorder.
This leads to the emergence of OBDP, where noise or
quenched disorder induce order instead of destroying it,
which is opposite from what one usually expects. This
effect is attributed to the emergence of the “entropic
(disorder-induced) force” that naturally arises in the pres-
ence of accidental degeneracy combined with stochasticity.
We show that this entropic (disorder-induced) force can
trigger noise-induced (disorder-induced) spontaneous sym-
metry breaking via nonreciprocal phase transition [11,34].
In addition, we provide numerical evidence that a spin-
glass-like state emerges in a randomly coupled spin chain
with nonreciprocal interaction but has no geometric frus-
tration. We observe in this model a power-law decay of a
time correlation function with a clear sign of aging, while
the spatial correlation function is found to be short-ranged
(stretched exponential decay). These findings establish an
unexpected connection between the seemingly unrelated
fields of complex magnetic materials and nonreciprocal

matter. Our results may have applications in the field of
active matter and biological systems and offer a novel
design principle for the robotic metamaterial.
The paper is organized as follows. In Sec. II, we draw a

direct analogy between geometrically frustrated systems
and nonreciprocally interacting systems with antisymmet-
ric coupling by proving that marginal orbits, which can be
regarded as a dynamical counterpart of accidental degen-
eracy, generically arise in both classes of systems. This is
shown by proving a Liouville-type theorem that holds in
this limit. In Sec. III, we demonstrate that this accidental
degeneracy of orbits typically gets lifted by stochastic noise
or quenched disorder, giving rise to time crystalline OBDP.
In Sec. IV, we show numerically that a state analogous to a
spin glass state emerges when nonreciprocity is introduced
in their coupling in a one-dimensional randomly coupled
spin chain. In Sec. V, we summarize our paper and discuss
the outlook.

II. EMERGENCE OF ACCIDENTAL
DEGENERACY OF ORBITS

In this paper, for concreteness, we focus on dissipatively
coupled classical XY spin systems with their spin angle
θ ¼ ðθ1;…; θNÞ dynamics governed by

θ̇i ¼ −
XN
j¼1

Jij sinðθi − θjÞ; ð1Þ

which generically has a nonreciprocal coupling Jij ≠ Jji.
The concepts we introduce below, however, should be valid
for a more general class of systems (see Table I and
Appendix A for other candidate systems). The effect
of stochastic noise will be addressed later. This dynamical
system [Eq. (1)] is invariant under global rotation
θi → θi þ χ (where χ is a real constant).
Let us first briefly review the reciprocal coupling case

Jij ¼ Jji with and without geometrical frustration. In such
systems, Eq. (1) can be rewritten using a derivative of an
energy EðθÞ as θ̇i ¼ −∂EðθÞ=∂θi, where

EðθÞ ¼ −
X
i;j

Jij cosðθi − θjÞ: ð2Þ

As a result, the system is driven toward the (local)
minimum of the energy E.
Frustration-free systems are systems that have ground

states that minimize the energy E of Eq. (2) term by term
[35] [Fig. 1(a)]. In this case, the ground state configuration
is uniquely determined when one of the spin angles is fixed.
Therefore, these systems only have a ground state degen-
eracy that is trivially due to the rotation symmetry of
the dynamical system [Fig. 1(a2)]. The dynamical system
Eq. (1) therefore has a unique stable fixed point [Fig. 1(a3)]
when regarding the orbits identical up to global rotation as
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the same orbit. In this case, all Lyapunov exponents would
be negative λi < 0 [Fig. 1(a4)] except for the zero modes
arising from the global rotation symmetry [i.e., the Nambu-
Goldstone mode, which we omitted in Fig. 1(a4)].
In contrast, in geometrically frustrated systems [Fig. 1(b)],

there are no configurations that simultaneously minimize all
the interaction terms [35]. In such a situation, the ground
state configuration is often underconstrained [36,39,40],
causing the emergence of an accidental degeneracy of
ground states [Fig. 1(b2)] that does not stem from their
underlying symmetry. Which ground state the system
ultimately converges to depends on its initial condition.
No restoring force would be applied in the direction in plane
of the accidentally degenerate ground state manifold. In the
language of dynamical systems, this implies the existence of
marginal fixed points [Fig. 1(b3)] that indicate the presence
of zero Lyapunov exponent(s) λ ¼ 0 [Fig. 1(b4)] (in addition
to the zero Lyapunov exponent trivially arising from the
Nambu-Goldstone mode).
We show below that the nonreciprocally interacting

system with antisymmetric coupling Jij ¼ −Jji (which
we refer to below as perfectly nonreciprocal) has exactly
the same feature: the existence of marginal orbits with zero
Lyapunov exponents λ ¼ 0 [Fig. 1(c)]. In this situation, the
distribution function ρðθÞ is found to stay constant along
any trajectory (see Appendix A for the proof), i.e.,

dρ
dt

¼ ∂ρ

∂t
þ
X
i

∂ρ

∂θi
θ̇i ¼ 0; ð3Þ

in a similar manner to Liouville’s theorem of Hamiltonian
systems. Note that a similar theorem holds for nonreci-
procally interacting Heisenberg models, oscillators with
phase-delayed interactions [58] (that well describe biased
Josephson junctions arrays [56,57] and microscopic
rotors [4]), and nonreciprocally interacting particles (that
describe, e.g., complex plasma [3] and chemically [5,6]
and optically active colloidal matter [7,8]), as shown in
Appendix A. (See Table I. See also Ref. [59] for a similar
relation known in the context of evolutionary game
theories.) The conservation of phase volume dV ¼
ρ
Q

i dθi of Eq. (3) means that the dynamics are dissipa-
tionless and the sum of all Lyapunov exponents is zero,P

N
i¼1 λi ¼ 0. In the absence of chaos λi ≤ 0, this makes

all Lyapunov exponents vanish λi ¼ 0 [Fig. 1(c4)], which,
generically, implies the emergence of marginal orbits

described schematically in Fig. 1(c3). Which orbit the
system ends up taking depends on the initial condition, in
an identical situation to the geometrically frustrated case.
We interpret these marginal orbits as the emergence of

accidental degeneracy caused by nonreciprocal frustration.
This degeneracy is accidental, in the sense that they do not
originate from the global symmetry or topology of the
dynamical system [Eq. (1)], in direct analogy to those of
geometrical frustration. The difference lies in both its
physical origin and the consequence: in the nonreciprocal
(geometrical) frustration case, the degeneracy comes from
Liouville’s theorem (underconstrained degrees of freedom
[36,39,40]) and the resulting marginal orbits are typically
time dependent (static).
Take a two-spin perfectly nonreciprocal system J12 ¼

−J21 ¼ J− as the simplest example [11,60]. One can
readily find an analytical solution to the center-of-mass
angle Θ ¼ ðθ1 þ θ2Þ=2 and the difference Δθ ¼ θ1 − θ2
for a given initial condition θi¼1;2ðt ¼ 0Þ as

ΘðtÞ ¼ −J−t sin½Δθð0Þ�; ΔθðtÞ ¼ Δθð0Þ: ð4Þ

As expected, the system exhibits marginal periodic orbits,
where the speed and direction of the drift of the center-of-
mass angle Θ are determined by the initial condition of
Δθ that stays constant. The numerical solution of a three-
spin perfectly nonreciprocal system is depicted in Fig. 2
as another example, where we similarly find marginal
periodic orbits.
Accidental degeneracy is usually associated with fine-

tuning of parameters. Here, in nonreciprocally frustrated

TABLE I. List of nonreciprocally interacting systems that satisfy the Liouville-type theorem in the antisymmetric limit.

Model Candidate systems Proof

Nonreciprocal XY model Robotic metamaterials Appendix A 1
Nonreciprocal Heisenberg model Robotic metamaterials Appendix A 2
Oscillators with phase-delayed interactions Biased Josephson junctions arrays [56,57], microscopic rotors [4] Appendix A 3
Nonreciprocally interacting particles Complex plasma [3], chemically or optically active colloids [5–8] Appendix A 4

FIG. 2. Marginal orbits in perfectly nonreciprocal three-spin
system. We set J12 ¼ −J21 ¼ 3, J23 ¼ −J32 ¼ −1, and
J31 ¼ −J13 ¼ 2.
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systems, the emergence of marginal orbits relies on the
fine-tuning of the coupling to be perfectly nonreciprocal
Jij ¼ −Jji. Once the coupling strength deviates from
this limit, the marginal orbits would generically turn into
(un)stable orbits, corresponding to the “lifting” of degen-
eracy. This situation is in parallel to the geometrical
frustration case where the degeneracy is often contingent
on the coupling strength being identical Jij ¼ J [36].
So far, we have considered cases where all spins are

perfectly nonreciprocally interacting Jij ¼ −Jji, where we
have shown that a Liouville-type theorem Eq. (3) holds in
such cases. This means that there is absolutely no dis-
sipation occurring in the system: Any initial state will
exhibit a marginal orbit that conserves the phase volume in
this case. In some sense, this is similar to systems with a
constant energy EðθÞ ¼ const, where all states are trivially
in the ground state manifold. This stands in contrast to
generic geometrically frustrated systems, where only a
small subset of states reside in the ground state manifold. In
such systems, a typical initial state would relax to a state
that corresponds to a marginal fixed point.
In what follows, we show that there is a class of

nonreciprocal systems where a generic initial state relaxes
to a marginal orbit, making the analogy to geometrically
frustrated systems even more direct. Namely, we consider a
system that is separated into communities that interact
nonreciprocally between different communities but ferro-
magnetically within the same community:

θ̇ai ¼
X
b

X
j

Jabij sinðθbj − θai Þ: ð5Þ

Here, a, b label the community and i, j label the spins in the
community, and the intracommunity coupling is ferromag-
netic Jaaij > 0. In such a situation, the spins in the intra-
communities would eventually align θai ¼ ϕa to give

ϕ̇a ¼
X
b

jab sinðϕb − ϕaÞ; ð6Þ

in the long time limit, which has an identical form to Eq. (1)
when the intercommunity coupling jab ¼

P
j J

ab
ij (a ≠ b)

is i independent. Therefore, following the same logic as
before, the system would exhibit marginal orbits with zero
Lyapunov exponents in the perfectly nonreciprocal inter-
community coupling jab ¼ −jba. The difference from the
systems considered before is the presence of dissipative
processes toward this attractor due to the ferromagnetic
intracommunity interactions Jaaij > 0. In the next section,
we will show that such a relaxation process combined with
the presence of marginal orbits indeed plays a crucial role
in the emergence of a counterintuitive phenomenon called
the OBDP.

III. TIME CRYSTALLINE ORDER-BY-DISORDER
PHENOMENA

Having established that nonreciprocal interaction gives an
alternative route from geometrical frustration to generating
accidental degeneracy of orbits (i.e., marginal orbits), we now
investigate their impact on the many-body properties of the
system. In geometrically frustrated systems, a paradigmatic
example of a phenomenon emerging from such accidental
degeneracy is the OBDP [37–41]. As the degeneracy gen-
erated by frustration is not protected by symmetry nor
topology, it is fragile, not only against external perturbations
but also against disorders such as thermal noise or weak
random potential. As a result, the degeneracy often gets lifted
and ends up, perhaps counterintuitively, in a more ordered
state than that of the clean system.This is knownas theOBDP.
In this section, we show that an analogous phenomenon

arises in the nonreciprocally interacting many-body sys-
tems as well, with the peculiarity that the emerging ordered
state is typically time periodic, also known as a time crystal
[61,62]. To illustrate the idea, let us first briefly review the
concept of OBDP in the geometrically frustrated systems in
equilibrium systems. As we have seen, at zero temperature
T ¼ 0 (no noise), geometrically frustrated systems
often exhibit accidental degeneracy in their ground states
[Figs. 3(a) and 3(c)]. Mathematically, this can be described
as the ground state energy EG being independent of the
system’s configuration within the accidentally degenerate
ground state manifold, which is parametrized by ϕ [i.e.,
EGðϕÞ ¼ const].
Now, let us introduce thermal noise, corresponding to a

system at finite temperature T > 0 [Figs. 3(b) and 3(d)].
In this case, the system converges to a state that minimizes
the free energy F ¼ E − TS, where S represents entropy.
Although the energy E ¼ EG remains constant within the
ground state manifold by definition, the fluctuation proper-
ties are typically configuration dependent, resulting in a
configuration-dependent entropy SðϕÞ. As a consequence,
the accidental degeneracy is generically lifted entropically,
driving the system toward the ground state with maximum
entropy ϕ�, which is “selected” [Fig. 3(b)]. The selected state
often exhibits a long-range order, giving rise to the counter-
intuitive phenomenon of OBDP, where thermal noise indu-
ces order [37–41]. We remark that, when the degeneracy
originates from symmetry, the entropy S cannot be configu-
ration dependent within the ground state degeneracy mani-
fold because the symmetry guarantees their equivalence.
This shows how the origin of degeneracy being accidental is
a key element for the emergence of OBDP.
In the language of dynamical systems, this can be

translated into the dynamics of the (thermal averaged)
parameter ϕ described by

ϕ̇ ¼ −
∂FðϕÞ
∂ϕ

¼ −
∂E
∂ϕ

þ T
∂SðϕÞ
∂ϕ

¼ T
∂SðϕÞ
∂ϕ

: ð7Þ
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The term fS ≡ T∂SðϕÞ=∂ϕ is an entropic force (or entropic
torque, in the context of spin systems) induced by thermal
noise, which drives the system toward the state of
maximum entropy [i.e., the “selected” ground state; see
Figs. 3(c) and 3(d)]. Crucially, the energy term fE ≡
−∂E=∂ϕ vanishes because of the property that the system
is marginal, which makes the entropic force fS ∝ T
dominant even at the weak thermal noise limit T → 0þ.
We will demonstrate in this section that this concept can

be generalized to nonreciprocally interacting systems
[Figs. 3(e) and 3(f)]. We will show that finite noise strength
in a nonreciprocally interacting system can give rise to a
conceptually similar entropic force that drives a specific
orbit toward stability, thereby triggering “orbit selection”
among the accidentally degenerate orbits. In parallel to the
case of geometrical frustration, we will demonstrate that
this entropic force tends to favor an ordered phase, leading
to noise-induced symmetry breaking—a characteristic
feature of OBDP. Importantly, with this concept extended

to a broader class of dynamical systems, noise can now
trigger phase transitions (bifurcations) beyond the conven-
tional equilibrium paradigm. We will showcase this by
demonstrating a noise-induced nonreciprocal phase tran-
sition [11] in our studied model, which has no counterpart
in equilibrium systems.

A. All-to-all coupled models

To set the stage, we consider an all-to-all coupled system
where the spins are grouped into a few communities
(labeled by a; b ¼ A;B;C;…) that each consist of Na
spins and are now subject to Gaussian white noise ηai ,

θ̇ai ¼ −
X
b

jab
Nb

XNb

j¼1

sinðθai − θbj Þ þ ηai ; ð8Þ

where hηai ðtÞi ¼ 0, hηai ðtÞηbj ðt0Þi ¼ σδabδijδðt − t0Þ. We
consider the case where the intracommunity couplings
are reciprocal and ferromagnetic jaa > 0, while the inter-
community couplings may be nonreciprocal jab ≠ jba
(a ≠ b). This is an example of systems described by
Eq. (5). The former causes the intracommunity spins to
order ferromagnetically at sufficiently weak noise strength,
which is characterized by the order parameter ψaðtÞ ¼
ð1=NaÞ

PNa
i¼1 e

iθai ðtÞ ¼ raðtÞeiϕaðtÞ [63]. Note that, for the
reciprocal case jab ¼ jba, this setup corresponds to an
equilibrium system at finite temperature T ¼ σ=ð2kBÞ
(where kB is the Boltzmann constant).
In the absence of noise σ ¼ 0, as discussed in the final

part of Sec. II, all of the spins in the same community
would eventually align (θai ¼ ϕa) to give perfect magneti-
zation ra ¼ 1. As a result, the spins in the same community
will collectively behave as a macroscopic object that
follows the same dynamics as Eq. (1) [as we have discussed
in Eq. (6)]. Therefore, these macroscopic angles ϕðtÞ ¼
½ϕAðtÞ;ϕBðtÞ;…� exhibit marginal, accidentally degenerate
orbits when the intercommunity couplings jab are chosen
to have geometrical or nonreciprocal frustration. For
example, in a geometrically frustrated system consisting
of four communities ða; b ¼ A;B;C;DÞ that interacts
antiferromagnetically jab ¼ −j < 0 (a ≠ b) [Fig. 4(a)],
the system relaxes to the accidentally degenerate ground
states parametrized by a relative angle α illustrated in the
inset of Fig. 4(a) (see Refs. [39,40] and Appendix B).
Similarly, systems with nonreciprocal frustration with
jab ¼ −jba exhibit time-dependent, marginal orbits ϕðtÞ.
[See Figs. 2 and 4(b).]
Below, we show that this accidental degeneracy generi-

cally gets lifted by the stochastic noise, irrespective of
whether the degeneracy is originated from geometrical or
nonreciprocal frustration. In the presence of noise, θai
fluctuates around the macroscopic spin angle ϕa. At
sufficiently weak noise strength, the distribution of δθai ¼
θai − ϕa takes a Gaussian distribution (see Appendix B),
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FIG. 3. The concept of order-by-disorder phenomena in equi-
librium and their generalization to nonreciprocally interacting
systems. (a),(b) Energy and free-energy profiles in a geometri-
cally frustrated system (a) without noise (i.e., zero temperature
T ¼ 0) and (b) with noise (i.e., finite temperature T > 0) in a
geometrically frustrated system. (c),(d) Orbits in a geometrically
frustrated system without (c) and with (d) thermal noise. At
T ¼ 0, the system exhibits ground state degeneracy, while the
presence of thermal noise at T > 0 lifts this degeneracy through
entropic forces. (e),(f) Orbits in a nonreciprocally interacting
system without (e) and with (f) noise. Similarly to the geomet-
rically frustrated system counterpart, “entropic force” selects one
of the orbits to give rise to OBDP.
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ρai ½t; δθai ;ϕðtÞ� ¼
1ffiffiffi

π
p

wa½t;ϕðtÞ�
e−ðδθai Þ2=w2

a½t;ϕðtÞ�; ð9Þ

with its width wa given by

w2
a½t;ϕðtÞ� ¼ 2σ

Z
t

0

dτe−2
R

t

τ
dτ0
P

b
jab cos½ϕaðτ0Þ−ϕbðτ0Þ�

for an initial condition with a perfectly magnetized state
δθai ðt ¼ 0Þ ¼ 0. In many cases we will consider below,
ϕa − ϕb converges to a constant value in the long time
limit, in which the width w2

aðt → ∞;ϕÞ is given by

w2
aðt → ∞;ϕÞ ¼ σP

bjab cosðϕa − ϕbÞ
: ð10Þ

Crucially, the widthwaðϕÞ of the fluctuations depends on
which accidentally degenerate orbit ϕðtÞ the system hap-
pened to take. This is in stark contrast to the degenerate
states arising from global symmetry, where all the degen-
erate states are guaranteed to have the same fluctuation
properties by symmetry. The configuration-dependent fluc-
tuation seen above is therefore a salient feature of the
accidentally degenerate states. Note how the ferromagnetic
intracommunity coupling jaa > 0 is playing a crucial role
in preventing the width w2

a from becoming negative,
ensuring the stability of the orbits.
As a result, macroscopic angle dynamics,

ϕ̇aðtÞ ¼ −
X
b

j⋆ab½ϕðtÞ� sin½ϕaðtÞ − ϕbðtÞ� þ η̄aðtÞ; ð11Þ

are now governed by ϕ-dependent, renormalized coupling:

j⋆ab½ϕðtÞ� ¼ jab
rb½ϕðtÞ�
ra½ϕðtÞ�

hcos2δθai iϕðtÞ; ð12Þ

where hhðδθai ÞiϕðtÞ ¼
R
dδθai ρ

a
i ½t; δθai ;ϕðtÞ�hðδθai Þ (see

Appendix B for derivation). Here, we have assumed that
thesystemself-averages,hhðδθai ÞiϕðtÞ ¼ð1=NaÞ

PNa
i¼1hðδθai Þ.

In Eq. (12), η̄a ≈ ð1=NaÞ
PNa

i¼1 η
a
i is the noise acting on the

macroscopic angle ϕa that obeys hη̄aðtÞi ¼ 0 and

hη̄aðtÞη̄bðt0Þi ≈
σ

Na
δabδðt − t0Þ: ð13Þ

As a result of ϕaðtÞ being a macroscopic quantity, the noise
strength on this quantity vanishes as one takes the thermo-
dynamic limit Na → ∞.
The renormalization of the coupling gives rise to an

additional torque to the deterministic limit [Eq. (6)], which
can be regarded as the entropic torque generalized to
dynamical systems that are not necessarily written in terms
of free energy [cf. Eq. (7)]. As we will see, this entropic
contribution determines the macroscopic features of sys-
tems with geometrical or nonreciprocal frustration that have
marginal orbits.
First consider the geometrically frustrated system intro-

duced above, which consists of four communities that
antiferromagnetically interact [jab ¼ −j < 0 (a ≠ b)]. This
system has an accidentally degenerate ground state mani-
fold parametrized by an angle α [Fig. 4(a)]. In this situation,
the effective coupling turns out to be ϕ independent
j⋆abðϕðαÞÞ ¼ −j⋆ < 0 on this manifold (Appendix B).
Therefore, this many-body problem maps to that of a
four-spin system on a tetrahedron lattice, but importantly,
at a very low but finite temperature T ∼ σ=Na → 0þ > 0.
As pointed out in Ref. [40], under such stochasticity,
the probability to realize the angle α is given by the
Boltzmann distribution [where FðαÞ is a free energy and
SðαÞ is the entropy at configuration α] (see Appendix B 1 a
for derivation),

ρðαÞ ∝ e−FðαÞ=ðkBTÞ ¼ eSðαÞ=kB ∼ j sinðαÞj−1; ð14Þ

for sin2 α ≫ σ=ðNaj⋆Þ → 0 that is found to be overwhelm-
ingly concentrated to the collinear configuration α� ¼ 0; π.
In other words, the entropic effects “select” the collinear
configuration α� ¼ 0; π among the degenerate ground
states (or the marginal fixed points in the dynamical system
language), giving rise to an OBDP.
We show below that a similar orbit selection takes place

in nonreciprocally frustrated systems as well [Fig. 4(b)],
due to the entropic force fS that is analogous to those
arising in Eq. (7). To be explicit, let us consider the case of
two communities a ¼ A;B that are nonreciprocally
coupled (jAB ≠ jBA). In the deterministic case σ ¼ 0, since
the dynamics of the order parameter is given by Eq. (6),

=

(a)
-j-j

-jj -j

(b)

-j

j

FIG. 4. Accidental degeneracy of orbits in geometrically and
nonreciprocally frustrated all-to-all coupled many-body systems.
The thick arrows represent the macroscopic angles ϕa that are
composed of a macroscopic number of spins represented by
smaller solid arrows. A geometrically frustrated four-community
system illustrated in (a) exhibits an accidental degeneracy para-
metrized by a relative angle α. Similarly, a nonreciprocally
frustrated two-community system illustrated in (b) exhibits
marginal orbits parametrized by a relative angle Δϕ. These
degeneracies are shown to get lifted by introducing disorder to
the system.
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the angle difference Δϕ ¼ ϕA − ϕB and the center-of-mass
angle Φ ¼ ðϕA þ ϕBÞ=2 dynamics is governed by

Δϕ̇ ¼ −ðjAB þ jBAÞ sinΔϕ; ðσ ¼ 0Þ; ð15Þ

Φ̇ ¼ −
jAB − jBA

2
sinΔϕ: ðσ ¼ 0Þ: ð16Þ

Hence, for the perfectly nonreciprocal case jAB ¼ −jBA ¼
j−, where the Liouville-type theorem [Eq. (3)] holds, the
angle difference is initial state dependent ΔϕðtÞ ¼ Δϕð0Þ.
The accidentally degenerate orbits are parametrized by Δϕ
in this case [Fig. 4(b)].
We will now show that the orbit selection occurs in the

presence of noise σ > 0 due to the emergence of entropic
torque. From Eq. (11), Δϕ and Φ dynamics is governed by
the equation of motion determined by the renormalized
coupling j⋆abðΔϕÞ [Eq. (12)]:

Δϕ̇ ¼ −½j⋆ABðΔϕÞ þ j⋆BAðΔϕÞ� sinΔϕ; ð17Þ

Φ̇ ¼ −
j⋆ABðΔϕÞ − j⋆BAðΔϕÞ

2
sinΔϕ: ð18Þ

Here, we have dropped the macroscopic noise η̄aðtÞ, which
is justified in the thermodynamic limit Na → ∞. [See
Eq. (13).] Because of the Δϕ dependence of the renor-
malized couplings j⋆abðΔϕÞ, the Liouville-type theorem no
longer holds, and the angle difference Δϕ exhibits stable
fixed points even in the nonreciprocal limit jAB ¼ −jBA;
the orbit selection occurs. In particular, there are two
candidates for stable fixed points of Δϕ [Eq. (17)] that
correspond to different phases of matter. One is a phase
that satisfies

sinΔϕ� ¼ 0; ð19Þ

which corresponds to a static phase Φ̇ ¼ 0 that has
an aligned (Δϕ� ¼ 0) or an antialigned (Δϕ� ¼ π)
configuration.
The other is a phase that only emerges in the presence of

noise σ > 0, which satisfies

j⋆ABðΔϕ�Þ ¼ −j⋆BAðΔϕ�Þ: ð20Þ

Generically, Δϕ� ≠ 0; π, corresponding to a time-
dependent phase Φ̇ ≠ 0 that is referred to as a chiral phase
in Ref. [11]. Importantly, while the static phase is invariant
under the parity operation,

ðϕA;ϕBÞ → ð−ϕA;−ϕBÞ; ð21Þ

the chiral phase spontaneously breaks it. Note that the
renormalized coupling satisfies j⋆abðΔϕÞ ¼ j⋆abð−ΔϕÞ,

which follows from the property ρai ðδθai ;ΔϕÞ ¼
ρai ðδθai ;−ΔϕÞ [that can be obtained from Eqs. (9) and (12)].
Therefore, if Δϕ ¼ Δϕ� were found to be a stable fixed
point of Eq. (17), then Δϕ ¼ −Δϕ� must also be a stable
fixed point, which transforms one to the other via parity
operation Eq. (21).
Take a perfectly nonreciprocal system jAB ¼ −jBA ¼ j−

that has an identical intracommunity ferromagnetic cou-
pling strength between the two communities jAA ¼ jBB ¼
j0 (taken to be j0 > jj−j to ensure stability w2

a > 0) as an
example. In this case, Eq. (17) reads (see Appendix B)

Δϕ̇ ≃
j0j2−σ2

2

cosΔϕ
ðj20 − j2− cos2ΔϕÞ2

sinΔϕ ð22Þ

at sufficiently weak noise level, which has stable fixed
points at Δϕ� ¼ �π=2 that corresponds to a chiral phase,
satisfying Eq. (20). The fixed points Δϕ� ¼ 0; π are
unstable. All these features are consistent with the numeri-
cal result presented in Fig. 5. This clearly shows that the
noise σ > 0 has induced an “entropic torque” that stabilizes
a spontaneous parity broken phase, in a similar manner to
the geometrically frustrated case; cf. Eq. (7). Derivation of
this entropic torque induced by nonreciprocity is one of the
main results of this paper.
This property has an important implication for a more

general case, i.e., when one is away from the perfectly
nonreciprocal case jAB ≠ −jBA. Figure 6 shows the noise
strength dependence of Δϕ� when jAB ¼ 0.35 ≠ −jBA ¼
0.25. While at small noise strength σ, the parity-symmetric
static phase Δϕ� ¼ 0 is realized, a parity-broken chiral
phase Δϕ� ≠ 0 emerges at higher noise level. This noise-
induced spontaneous symmetry breaking is a salient feature
of OBDP.
A qualitative understanding of this counterintuitive

phenomenon can be obtained from our formalism as
follows. In the deterministic case, when the reciprocal part
of the intercommunity coupling is positive (negative) jþ ≡
ðjAB þ jBAÞ=2 > 0 (< 0), Eq. (15) tells us that a static
phase with an aligned configuration Δϕ� ¼ 0ðπÞ would be
realized, in agreement with Fig. 6 at σ ¼ 0. As one turn on
the noise strength σ > 0, Eq. (17) reads

Δϕ̇ ¼
�
−2jþ þ j0j2−σ2

2

cosΔϕ
ðj20 − j2−cos2ΔϕÞ2

�
sinΔϕ; ð23Þ

where we have assumed small reciprocity jjþj ≪ jj−j; j0
and restricted ourselves to be near the phase transition
point. (See Appendix B for derivation.) This equation is to
be compared with its geometrical frustration counterpart,
Eq. (7). Here, the first term proportional to the reciprocal
piece jþ > 0 (< 0) describes the torque that tries to make
the angles (anti)aligned, which can be considered as an
analog of the first term of Eq. (7). This torque competes
with the entropic torque induced by nonreciprocal
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frustration [the second term that is identical to the right-
hand side of Eq. (22)].
When the noise is weak and the first term is dominant

over the second, Eq. (23) has only one stable fixed point
Δϕ� ¼ 0ðπÞ. However, once the noise strength σ exceeds a
critical value,

σ > σc ¼ 2

ffiffiffiffiffiffiffiffi
jjþj
j0

s
j20 − j2−
jj−j

; ð24Þ

the entropic torque [the second term of Eq. (23)] makes the
system bifurcate to a chiral phase with ϕ� ≠ 0; π. This
signals the emergence of a spontaneous parity breaking
seen in Fig. 6. This result implies a phase diagram
schematically depicted in Fig. 7.
We remark that the phase transition observed above is an

instance of a nonreciprocal phase transition [11], which has

no equilibrium counterpart. Nonreciprocal phase transition
is marked by a spectral singularity called an exceptional
point, where the eigenvectors coalesce [64] to a zero
mode at the critical point [11,65]. This can be seen by
linearizing Eqs. (23) and (18) around the static phase
Δϕ ¼ Δϕ� þ δΔϕ ¼ δΔϕ,

�
δΦ̇
δΔϕ̇

�
¼

0
B@ 0 −2j− þ j0σ

j2
0
−j2−

þ ð2j2
0
þj2−Þσ2

4ðj2
0
−j2−Þ2

0 −2jþ þ j0j2−σ2

2ðj2
0
−j2−Þ

1
CA�

δΦ
δΔϕ

�

¼ L̂

�
δΦ
δΔϕ

�
: ð25Þ

At the transition point σ ¼ σc [Eq. (24)], the (2,2) compo-
nent of the Jacobian L̂ vanishes, giving a defective
matrix [64] with zero eigenvalues:

L̂c ¼
�
0 −2j− þ 2

ffiffiffiffiffiffiffiffiffiffi
j−jþ

p
− jþj−

j0
− 2j0jþ

j−

0 0

�
: ð26Þ

This shows that the eigenvectors with zero eigenvalues
coalesce at the critical point, which is a salient feature of
nonreciprocal phase transitions [11,28,29,65–67].
It is also worth mentioning that there are cases where the

“entropic effects” favor a static state, even in the perfectly
nonreciprocal case jþ ¼ 0. In Appendix B, we show both

(a)

(b)

(c)

FIG. 5. Time crystalline order-by-disorder phenomena induced
by nonreciprocal frustration. Time evolution of (a) the angle
difference Δϕ ¼ ϕA − ϕB, (b) ϕA;ϕB, and (c) the effective
coupling strength j⋆abðϕÞ [Eq. (12)]. In (a), the solid (thin) line
represents the dynamics in the presence (absence) of noise. We
set jAA ¼ jBB ¼ 3, jAB ¼ −jBA ¼ 1, the noise strength σ ¼ 1.5,
and the number of spins NA ¼ NB ¼ 2000. The system “selects”
Δϕ� ¼ �π=2 that satisfies Eq. (20) to give rise to the time-
dependent phase (chiral phase), all in agreement with our
analytical analysis in the main text.

-π/4

π/4

-π/2

0

π/2
Parity symmetric Parity broken

FIG. 6. Noise-induced spontaneous parity breaking. The com-
puted noise strength dependence of the angle difference Δϕ ¼
ϕA − ϕB of the order parameter ψa ¼ raeiϕa in the steady state
for jAB ¼ 0.35 ≠ −jBA ¼ 0.25. Here, the solid lines and the
shaded area represent the average and the variance of Δϕ,
respectively, which were calculated using the data after reaching
a steady state (in the time range 100 < t < 400) with an initial
condition θAi ðt ¼ 0Þ ¼ π=4ð¼ −π=4Þ and θBi ðt ¼ 0Þ ¼ 0 for blue
(orange) plots. The transition from Δϕ ¼ 0 (parity-symmetric
static phase) to Δϕ ≠ 0 (parity-broken chiral phase) as σ
increases indicates that the noise has induced the spontaneous
symmetry breaking, which is a salient feature of OBDP and is
opposite from what is usually expected. We set jAA ¼ jBB ¼ 1,
and NA ¼ NB ¼ 2000.
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analytically and numerically that systems with jAA ≫ jBB
and jAA≪ jBB “select” a static state,Δϕ� ¼π andΔϕ� ¼ 0,
respectively (see Fig. 16 in Appendix B). Physically, this is
due to the property that, when jAA ≫ jBB (jAA ≪ jBB), the
width of the fluctuation of the A(B) community wA (wB) is
smaller because the A(B) community gets stiff, leading to
stronger suppression of jj⋆ABðΔϕÞj [jj⋆BAðΔϕÞj]. [See
Eq. (B9).] Similar effects can be seen when the noise
strengths are different between the two communities,
i.e., when the noise is characterized by hηaðtÞi ¼ 0,
hηaðtÞηbðt0Þi ¼ σaδabδðt − t0Þ, with σA ≠ σB. When σA ≫
σB (≪ σB) with jAA ¼ jBB leads to “selecting” the (anti)
aligned static configuration Δϕ� ¼ 0ðπÞ. These illustrate
how the entropic torques that determine which state the
system selects are strongly affected by the fluctuation
properties of the degenerate states.
So far, we have analyzed the simplest system with two

communities under stochastic noise. However, the under-
lying mechanism of OBDP is not restricted to such a
specific case. We show below that an orbit selection occurs
for a nonreciprocal three-community system,

θ̇ai ¼ ωa
i −

X
b

jab
Nb

XNb

j¼1

sinðθai − θbj Þ; ð27Þ

with a random torque ωa
i (a; b ¼ A;B;C) distributed in a

Lorentz distribution function,

paðωa
i Þ ¼

1

π

Δ
ðωa

i Þ2 þ Δ2
; ð28Þ

as a source of quenched disorder. ThewidthΔ characterizes
the strength of the quenched disorder. This is the Kuramoto
model [11,63,68] generalized to multiple communities.
According to Refs. [69,70], the order parameter dynamics
of this system are governed by

ψ̇a ¼ −Δψa þ
1

2

X
b

jabðψb − ψ2
aψ

�
bÞ: ð29Þ

Figure 8 shows the order parameter dynamics of this
system. Among the marginal orbits in the absence of
disorder Δ ¼ 0 shown in Fig. 2 (and the thin line of
Fig. 8), certain orbits are selected to be stable (solid lines in
Fig. 8), signaling the occurrence of OBDP.

B. Spatially extended models

Systems that exhibit the nonreciprocal frustration-
induced OBDP are not restricted to all-to-all coupled
models analyzed in the previous section. To demonstrate
the generality of our finding, we now consider a nonre-
ciprocal XY-spin system on a d-dimensional hypercubic
lattice with nearest- and next-nearest-neighbor interactions.
(The d ¼ 2 case is illustrated in Fig. 9.) As in the model
considered in the previous section, this model is composed
of two communities of spins on different sublattices
a ¼ A;B. While the spins on the same sublattice interact
ferromagnetically via the next-nearest-neighbor interaction
jAA; jBB > 0, the spins on different sublattices interact
nonreciprocally by the nearest-neighbor interaction
jAB ≠ jBA. This system can be regarded as a natural
extension of the all-to-all coupled model studied in the
previous section generalized to a spatially extended
d-dimensional system. The stochastic equation of motion
is given by

θ̇Ax ¼ 1

2d

X
â

jAA sinðθAxþâ − θAx Þ

þ 1

2d

X
b̂

jAB sinðθBxþb̂
− θAx Þ þ ηAx ; ð30Þ

(a) (b)

FIG. 7. Schematic phase diagram. (a),(b) Schematic steady-
state phase diagram in the absence of noise σ ¼ 0 (a) and in the
presence of noise σ > 0 (b). The intracommunity couplings
jAA > 0 and jBB > 0 are assumed to be large compared to
intercommunity couplings jAB and jBA.

FIG. 8. Order-by-disorder phenomena in a nonreciprocally
coupled three-community system with random torque. Solid
(thin) lines represent the trajectories for different initial con-
ditions in the presence (absence) of random torque, where one
can see that certain orbits are selected by the disorder. The angle
difference ϕa − ϕb dynamics are computed using the Ott-
Antonsen ansatz [69,70] [Eq. (29) in Appendix B]. We set the
coupling jAA¼ jBB¼ jCC¼4, jAB¼−jBA¼3, jBC¼−jCB¼−1,
jCA ¼ −jAC ¼ 2, the torque distribution width Δ ¼ 0.1.
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θ̇Bx ¼ 1

2d

X
â

jBB sinðθBxþâ − θBx Þ

þ 1

2d

X
b̂

jBA sinðθA
xþb̂

− θBx Þ þ ηBx : ð31Þ

Here, the angle of spin in the position x on a sublattice

AðBÞ is denoted by θAðBÞx and â and b̂ are the vectors that
point to the next-nearest- and nearest-neighbor sites,
respectively. ηaxðtÞ is a white noise characterized by
hηaxðtÞi ¼ 0 and hηaxðtÞηbx0 ðt0Þi ¼ σδabδx;x0δðt − t0Þ.
In parallel to the previous section, we first consider the

deterministic case, σ ¼ 0. In this case, as before, there is
nothing that disturbs the spins from aligning within the
same sublattice. As a result, all the angles in the same
sublattices align, θAx ¼ ϕA and θBx ¼ ϕB, where, as before,
we have introduced the order parameter ψa ¼ raeiϕa ¼
N−1P

x e
iθax (where N is the number of spins at each

sublattice). In such a case, Eqs. (30) and (31) reduce to the
same dynamics as the two-spin system [Eq. (6)]. Therefore,
in the case of perfect nonreciprocity jAB ¼ −jBA, the
accidental degeneracy of orbits arises, parametrized again
by the relative angle Δϕ ¼ ϕA − ϕB.
In the presence of the noise σ > 0, OBDP occurs.

Because of the property that the distribution of fluctuations
around the steady state δθax ¼ θax − ϕa is strongly depen-
dent on the orbit of the order parameter Δϕ, the order
parameter dynamics follows the same form as Eqs. (17)
and (18), with the renormalized coupling that has a
different expression from the all-to-all coupled case.
Their explicit form is reported in Appendix B.

At small reciprocal regime jjþj ≪ jj−j; j0, one finds

Δϕ̇ ≃
�
−2jþ þ j2−σ2 cosΔϕ

4j0

X
k;k0

j20k
02 − 2j2−cos2Δϕ

ð4j2−cos2Δϕ − j20k
2Þð4j2−cos2Δϕ − j20k

02Þk2k02
�
sinΔϕ; ð32Þ

which has a similar form to the all-to-all coupling case
[Eq. (23)]. Especially when jþ ¼ 0 (perfectly nonrecipro-
cal limit), one can readily check that Eq. (32) has a stable
fixed point at Δϕ� ¼ �π=2 corresponding to the chiral
phase (as in the previous section). Therefore, the second
term describes the entropic torque that drives the system
to the spontaneous parity-broken phase, which competes
with the reciprocal coupling [first term of Eq. (32)] that
drives the system to the static, parity-symmetric phase. This
triggers a nonreciprocal phase transition [11] from a static
phase Δϕ� ¼ 0; π to the chiral phase Δϕ� ≠ 0; π as the
noise strength is increased, again, signaling the OBDP.
We briefly note that the fluctuations are known to

exhibit an anomalous enhancement that diverges for
spatial dimensions below d ¼ 4 at the phase transition
point of a nonreciprocal phase transition [65]. A recent
study [67] has further demonstrated that these significant
fluctuations induce a discontinuous transition for spatial
dimensions below d ¼ 4. To fully capture this physics, a
more advanced analysis beyond the lowest-order pertur-
bative approach employed in this study is necessary, which

is beyond the scope of this paper. We emphasize, however,
that our noise-induced spontaneous symmetry-breaking
scenario itself would be unaffected by this fluctuation
physics, as the OBDP physics is relevant outside the
critical regime.

IV. NONRECIPROCITY-INDUCED
SPIN-GLASS-LIKE STATE

Another striking phenomenon arising from geometrical
frustration is the emergence of spin glasses [42–48], which
occurs ubiquitously in geometrically frustrated systems
with random interactions. In such a situation, a macro-
scopic number of fixed points and saddle points are
generated to make the energy landscape bumpy. This
makes it extremely difficult for the system to find its
global minimum, resulting in slow dynamics characterized
by a power-law decay (or slower [48]) of time correlation
functions and the aging phenomena [45,46,48] associated
with no long-ranged spatial order.
A natural question is whether such glassy states can be

generated by nonreciprocal interaction. It is tempting to

A

B

jAB jBA

jBA

jAB jBBjBBjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBjjjjjjjjBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBjBB

jAA

FIG. 9. Nonreciprocal XY-spin system on a hypercubic lattice.
In this model, XY spins on a hypercubic lattice interact with their
next-nearest-neighbor (nearest-neighbor) spins in a reciprocal
(nonreciprocal) manner. The spins are divided into two com-
munities, namely the sublattices A and B. Within each sublattice,
the spins interact reciprocally via next-nearest-neighbor inter-
actions jAA and jBB, while the spins on different sublattices
interact nonreciprocally through nearest-neighbor interactions
jAB and jBA. The figure illustrates the case of a two-dimensional
spatial dimension (d ¼ 2), but the model can be readily extended
to higher spatial dimensions.
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expect the negative, as they induce the chase and run away
dynamics that may cause the glass to melt. Indeed, there are a
number of works that support this view [15,17,20–22,71–74]
including the works in the context of neural [20,21,72–74]
and ecological systems [15,17]. However, the above
studies analyzed (mostly all-to-all coupled) models that
already contained geometrical frustration in the recip-
rocal limit, making the exact role of nonreciprocal
frustration unclear.
To unambiguously study the effect of nonreciprocal

frustration alone, it is important for us to consider models
that have no geometrical frustration in the reciprocal limit.
For this purpose, we consider a one-dimensional XY spin
chain that follows Eq. (1) that consists of N spins with

nearest-neighbor interaction Jij ¼ JRi δiþ1;j þ JLi δi;jþ1 in an
open boundary condition (Fig. 10),

θ̇i ¼ JRi sinðθiþ1 − θiÞ þ JLi sinðθi−1 − θiÞ; ð33Þ

with JL=Ri being randomly distributed according to

pðJL=Ri Þ ∝
(
e−ðJ

L=R
i Þ2=ð2σ2JÞ jJL=Ri j ≥ Jc

0 jJL=Ri j < Jc:
ð34Þ

Here, σ2J ¼ hðJRi Þ2i ¼ hðJLi Þ2i characterizes the random-
ness of the coupling and has introduced a cutoff Jc (which
we set Jc ¼ 0.1σJ throughout) to prevent the coupling from
completely vanishing. We also introduce an asymmetry
parameter γ defined by hJLi JRi i≡ γσ2J that parametrizes the
asymmetry (nonreciprocity) of the coupling. For example,
γ ¼ 1 corresponds to the reciprocal limit (where all spins
satisfy Jij ¼ Jji), while γ ¼ −1 corresponds to the anti-
symmetric limit (where all spins satisfy Jij ¼ −Jji). γ ¼ 0

corresponds to the case where Jij and Jji are independent.
This model has a crucial advantage in that no geomet-

rical frustration exists in the reciprocal case γ ¼ 1, and
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J i+2
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...

FIG. 10. One-dimensional spin chain with random asymmetric
nearest-neighbor coupling.
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FIG. 11. Domain-wall annihilation dynamics in reciprocal one-dimensional random spin chain. The reciprocal coupling JRi ¼ JLi
(Jij ¼ Jji) case. As shown in the bottom left-hand panel, the ground state configuration of the reciprocally coupled spin chain (where the
signs represent the sign of the reciprocal coupling at each bond) exhibits nematic order that is unique up to global rotation, implying the
absence of geometrical frustration. (a) Typical trajectory of (nematic) angles φi ¼ θiðmod πÞ. We set N ¼ 29 ¼ 512, and the initial
conditions were taken randomly from a uniform distribution θi ¼ ½0; 2πÞ. (b) Spatial correlation function Cxðx; tÞ. (c) Time correlation
function Ctðtw þ t; twÞ. In (b) and (c), we have averaged over 400 trajectories of random initial conditions and configurations of coupling
strengths and have set N ¼ 210 ¼ 1024. The domain-wall annihilation dynamics of this one-dimensional chain give rise to slow
relaxation (that shows aging phenomena) toward a long-ranged nematically ordered state.

RYO HANAI PHYS. REV. X 14, 011029 (2024)

011029-12



therefore, frustration can only arise through nonreciprocal
interactions. This can be seen from the fact that the ground
state configuration of the reciprocal system is uniquely
determined once one fixes one of the spins (Fig. 11, bottom
left-hand panel). Since reciprocal coupling favors either
alignment or antialignment of spins, the ground state in the
reciprocal limit exhibits a nematic order characterized by a
complex order parameter ψ2 ¼ ð1=NÞPN

i¼1 e
2iθi.

Figure 11(a) shows a typical trajectory of φi ¼
θiðmod πÞ (which regards the angles of the arrow pointing
to opposite directions as being identical, thus making it
useful to measure nematicity) in the reciprocal case,
JRi ¼ JLi . Here, we have set the initial state to be random.
As seen, the dynamics are governed by the annihilation
dynamics of the initially created (nematic) domain walls
toward the nematic long-range ordered state. This is
captured in the spatial correlation function,

Cxðx; tÞ ¼
���� 1

N − x

XN−x

i¼1

ψ2;iþxðtÞψ�
2;iðtÞ

����; ð35Þ

that is converging toward the long-range ordered state
Cxðx; t → ∞Þ → 1 [Fig. 11(b)]. Here, ψ2;iðtÞ ¼ e2iθiðtÞ is a
complex representation of nematic direction at site i, and
ð� � �Þ represents the average over random initial conditions,
with a different configuration of Jij taken for each run. The
temporal correlation function,

Ctðtw þ t; twÞ ¼
����1N

XN
i¼1

ψ2;iðtw þ tÞψ�
2;iðtwÞ

����; ð36Þ

on the other hand, converges to a constant in this phase
[Fig. 11(c)]. Note that, because of the slow domain-wall
annihilation process, the temporal correlation function
Cðtþ tw; twÞ exhibits an aging behavior, i.e., the feature
that the system takes more time to decorrelate as the waiting
time tw proceeds even at timescales a lot larger than
microscopical timescales twð≫ σ−1J ; J−1c Þ [Fig. 11(c)].
Now let us turn to the nonreciprocal case γ ¼ 0, where

we sample the couplings JRi and JLi independently. In this
case, as seen in Fig. 12(a), we observe the formation of
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FIG. 12. Nonreciprocal frustration-induced spin-glass-like state in an asymmetric random spin chain. The asymmetric coupling case
(Jij ≠ Jji) with the coupling to the left JLi and the right J

R
i sampled independently (γ ¼ 0). (a),(b) Typical trajectory of (nematic) angles

φi ¼ θiðmod πÞ of a one-dimensional random nonreciprocal spin chain. Here, we have set N ¼ 29 ¼ 512, and the initial condition was
taken randomly from a uniform distribution θi ¼ ½0; 2πÞ. (b) Line-cut data of the trajectory at site i ¼ 230, 233, 236 of (a). (c) Spatial
correlation functionCxðx; tÞ. (d) Time correlation function Ctðtw þ t; twÞ. Note that both axes are plotted on a logarithmic scale. We have
averaged over 500 trajectories for σJt ≤ 6.4 × 103 in (c) and 400 trajectories for σJt ≥ 3.2 × 104 in (c) and for all plots in (d). We have
set N ¼ 210 ¼ 1024. This system exhibits slow dynamics characterized by power-law decay and aging phenomena and a short-ranged
spatial correlation (which exhibits stretched exponential decay; see Fig. 13), where the latter property is in stark contrast to the
nematically ordered state seen in the reciprocal case (Fig. 11). These properties are reminiscent of a spin glass.
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domains that are locally nematically ordered, in which
many of them are almost time periodic [see, e.g., i ¼ 230 in
Fig. 12(b)], but others seem to be interrupted (i ¼ 233) by
the nearby chaotic domain (i ¼ 236). These behaviors are
vastly different from the reciprocal case of Fig. 11(a)
dominated by domain-wall annihilation dynamics.
Figures 12(c) and 12(d) show the spatial and time

correlation function of this asymmetric spin chain, respec-
tively. Strikingly, the time correlation function exhibits
a power-law decay Ctðtw þ t; twÞ ∼ t−α at large t with a
clear sign of aging, while the state is converging toward a

short-ranged spatially correlated state [which exhibits
a stretched exponential decay Cxðx; tÞ ∼ e−ðjxj=ξÞα with
α ¼ 0.49, see Fig. 13], in stark contrast to the reciprocal
case. These features are reminiscent of a spin glass, except
that the time correlation function does not seem to converge
to a finite value at t → ∞ [42] (at least up to σJt ¼ 105),
implying that the state does not completely freeze to a
static state.
Figure 14 shows the spatial and temporal correlation

function for various values of asymmetry parameter γ.
Here, to make the convergence to the nematic state in the
nematic order phase faster, we have chosen the initial states
to be close to the nematic phase. We observe that even at
very weak nonreciprocity (γ ¼ 0.9), qualitatively the same
feature to the spin-glass-like phase observed at γ ¼ 0 in
Fig. 12 is also seen.
This slow decay observed in asymmetric cases is

qualitatively different from the disordered state that occurs
when stochastic noise ηiðtÞ is added to Eq. (33). Figure 15
shows the spatial and temporal correlation functions in
the presence of a small Gaussian white noise [where
hηiðtÞi ¼ 0, hηiðtÞηjðt0Þi ¼ σδijδðt − t0Þ]. As seen, both
the spatial and temporal correlation function at the long
time limit exhibit an exponential decay in the disordered
phase, in qualitative difference from our spin-glass-like
state in Fig. 12.
Summarizing, we have found numerical evidence that

nonreciprocal coupling can induce a phase reminiscent of a
spin glass, which is qualitatively different from both the
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P
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j¼1 π½1þ sgnðJRj Þ�=2þ 10−3ηi, where ηi ¼ ½0; 2πÞ is a uniformly distributed random valuable.
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disordered state and the nematically ordered state. For
convenience, we have summarized the different behaviors
of the correlation function in different phases in Table II. In
contrast to both of these phases, the spin-glass-like state
exhibits an algebraic decay in the temporal correlation
function while exhibiting a short spatial correlation.
We remark that a similar slow decay to the one observed

in our spin-glass-like phase has been observed in one-
dimensional coupled logistic maps in their discrete-time
evolution, as pioneered by Kaneko [75,76]. In his model,
each site is itself a logistic map that exhibits bifurcations to
limit cycles or chaos, and these sites are coupled with their
neighboring sites. At a phenomenological level, we observe
interesting similarities between our model and Kaneko’s
model: In the former, by regarding each domain seen in
Fig. 12(a) as a chaotic or periodic element, each element
seems to be attempting to align with the nearby domains,

somewhat analogous to the latter situation. However, there
are also clear differences, e.g., the randomness is explicitly
encoded in the former from random coupling (similarly to
the original spin-glass problem) while they are generated
spontaneously from chaos in the latter. The connection
between the two models deserves further investigation.

V. CONCLUSION AND OUTLOOK

We have shown that nonreciprocal interaction may
generate marginal orbits (accidental degeneracy) similar
to those in geometrically frustrated systems, establishing a
direct analogy between the two classes of systems. We have
shown that the emergence of this accidental degeneracy can
give rise to a dynamical counterpart of order-by-disorder
phenomena and spin glasses. Our results offer an unex-
pected bridge between complex magnetic materials with
geometrical frustration and nonreciprocal systems.
There are many possible directions for further extensions.

For example, in Sec. III (where we studied order-by-disorder
phenomena induced by nonreciprocal frustration), for sim-
plicity, we have focused on models that have accidental
degeneracy of orbits parametrized by just one or two
parameters in the deterministic limit. This is in a similar
situation to (geometrically frustrated) 2D J1 − J2 XY model
[38]. However, various geometrically frustrated models have
a macroscopic number of ground state degeneracy. They
either exhibit order by disorder [37,39,40] or classical spin
liquids that lack long-ranged order in the low-temperature
limit T → 0, depending on the number of unconstrained
degrees of freedom and number of directions of gapless
excitations [39,40]. We plan to study systems with such
macroscopic numbers of degeneracy induced by nonrecip-
rocal frustrations [77] to find the criterion for the emergence
of order by disorder similar to those given in Refs. [39,40]
for geometrically frustrated systems.
For the spin-glass-like state that was studied in Sec. IV,

the purpose of focusing on a one-dimensional spin chain
with nearest-neighbor interactions was to make sure
that geometrical frustration is absent and therefore the
glassy dynamics observed in the simulation can be safely
attributed to nonreciprocal effects. In two or higher
dimensions, the two types of frustrations (geometrical
and nonreciprocal) may coexist. It would be interesting
to ask how the conventional spin glass [that is characterized
by a nonzero Edwards-Anderson order parameter [42],
i.e., qEA ¼ limt→∞ limtw→∞ Ctðtw þ t; tÞ ≠ 0] evolves to
the nonreciprocal spin-glass-like state (that exhibits a
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FIG. 15. Correlation function in the disordered state. (a) Spatial
correlation functionCxðx; tÞ and (b) temporal correlation function
Ctðtþ tw; twÞ. We set γ ¼ 1 and the noise strength σ ¼ 0.1.
We have averaged over 500 trajectories. Similarly to Fig. 14, we
have set the initial state to be close to a nematic phase
θi ¼

P
i
j¼1 π½1þ sgnðJRj Þ�=2þ 10−3ηi, where ηi ¼ ½0; 2πÞ is a

uniformly distributed random valuable.

TABLE II. Phases in an asymmetric random spin chain and the behaviors of correlation function.

Parameter Phase Spatial correlation function Temporal correlation function

Reciprocal (γ ¼ 1) and deterministic Nematically ordered Long-ranged order Converges to a constant (slowly)
Nonreciprocal (γ < 1) and deterministic Spin-glass-like Stretched exponential decay Power-law decay with aging
Stochastic Disordered Exponential decay Exponential decay without aging
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vanishing qEA ¼ 0 but still exhibits aging phenomena
found in this work), and what are the properties of the
phase transitions between them, if any.
Another possible direction is to extend our work to open

quantum systems [25,78]. In Ref. [25], a recipe to realize
nonreciprocal interaction via reservoir engineering has
been proposed and nonreciprocal hopping has already
been implemented experimentally [79]. It would be inter-
esting to ask whether states reminiscent of quantum spin
liquids with long-ranged entanglement can appear by
nonreciprocal frustration.
Finally, in this work, we have focused on how far we can

push the analogies between geometrical and nonreciprocal
frustrations. Given that we have established such analogies,
an interesting next step would be to ask what the funda-
mental differences between the two are, other than the
rather obvious difference that the final states are usually
time dependent in the latter.
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APPENDIX A: LIOUVILLE-TYPE THEOREM
FOR PERFECTLY NONRECIPROCAL SYSTEMS

1. XY model

Here we provide the proof for the Liouville-type theorem
[Eq. (3) in the main text] for the XY model:

θ̇i ¼ −
X
j

Jij sinðθi − θjÞ: ðA1Þ

We also provide its generalization to more general nonre-
ciprocal models in later subsections. The continuity equa-
tion of the distribution function ρ for the XY model
[Eq. (A1)] is given by

∂ρ

∂t
¼ −

X
i

∂ðρθ̇iÞ
∂θi

¼ −
X
i

�
∂ρ

∂θi
θ̇i þ ρ

∂θ̇i
∂θi

�
: ðA2Þ

In the perfectly nonreciprocal case Jij ¼ −Jji, the second
term of Eq. (A2) can be shown to vanish as

ρ
X
i

∂θ̇i
∂θi

¼ ρ
X
ij

½Jij cosðθi − θjÞ� ¼ 0; ðA3Þ

where in the last equality we have used the property that Jij
is antisymmetric and cosðθi − θjÞ is symmetric. This gives

dρ
dt

¼ ∂ρ

∂t
þ
X
i

∂ρ

∂θi
θ̇i ¼ 0; ðA4Þ

proving the Liouville-type theorem.

2. Heisenberg model

In the above proof, note how we have used only the
property that the derivative of the right-hand side of the
dynamical system Eq. (A1) is antisymmetric. This suggests
that the Liouville-type theorem holds more generally.
For example, the Heisenberg spin Si ¼ ðSxi ; Syi ; Szi Þ (with
jSij2 ¼ 1) systems that is described by the Landau-Lifshitz
equation [80],

Ṡi ¼ −
XN
j¼1

Jij½Si × Sj þ αSi × ðSi × SjÞ�; ðA5Þ

can be shown to satisfy the Liouville-type theorem,

dρ
dt

¼ ∂ρ

∂t
þ
XN
i¼1

X
μ¼x;y;z

∂ρ

∂Sμi
Ṡμi ; ðA6Þ

when the coupling is antisymmetric Jij ¼ −Jji. This can be
shown by noting that

∂ρ

∂t
¼ −

X
i;μ

∂ðρṠμi Þ
∂Sμi

¼ −
X
i;μ

�
∂ρ

∂Sμi
Ṡμi þ ρ

∂Ṡμi
∂Sμi

�
: ðA7Þ

Rewriting Eq. (A5) as (where ϵμνσ is the Levi-Civita
symbol)

Ṡμi ¼ −
X
j

Jij

�X
νσ

ϵμνσSνi S
σ
j þ α

�X
ν

Sνi S
ν
jS

μ
i − Sμj

��
; ðA8Þ

one can see that

X
i;μ

∂Ṡμi
∂Sμi

¼
X
i;j;μ

Jij
∂

∂Sμi

�X
νσ

ϵμνσSνi S
σ
j þ α

�X
ν

Sνi S
ν
jS

μ
i − Sμj

��

¼
X
i;j;μ

Jij

�X
νσ

ϵμνσδμνSσj þ α
X
ν

½δμνSνjSμi þ Sνi S
ν
j �
�

¼
X
i;j;μ

Jijα

�
Sμi S

μ
j þ

X
ν

Sνi S
ν
j

�

¼ 0 ðA9Þ
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holds, where again, we have used the property that Jij is
antisymmetric Jij ¼ −Jji in the last line. Combining
Eqs. (A7) and (A9) proves the Liouville-type theorem
for perfectly nonreciprocal Heisenberg system [Eq. (A6)].

3. Coupled oscillators with phase delay

We consider a system composed of coupled oscillators
with a phase delay [58,81]:

θ̇i ¼ ωi þ
X
j

Jij sinðθj − θi þ αiÞ: ðA10Þ

Here, 0 ≤ αi ≤ π=2 is the phase delay, ωi is a natural
frequency, and the coupling constant Jij ¼ Jji is symmet-
ric. This model is relevant for the physics of biased
Josephson junctions arrays [56,57] and microscopic
rotors [4] that has been derived from microscopic models.
The phase delay αi ≠ 0 drives the coupling to be

nonreciprocal. In the nonreciprocal limit αi ¼ π=2,

θ̇i ¼ ωi −
X
j

Jij cosðθi − θjÞ; ðA11Þ

the Liouville-type theorem,

dρ
dt

¼ ∂ρ

∂t
þ
X
i

∂ρ

∂θi
θ̇i ¼ 0; ðA12Þ

holds. This can be shown from the relation

ρ
X
i

∂θ̇i
∂θi

¼ ρ
X
i;j

Jij sinðθi − θjÞ ¼ 0 ðA13Þ

that gives

∂ρ

∂t
¼ −

X
i

∂ðρθ̇iÞ
∂θi

¼ −
X
i

∂ρ

∂θi
θ̇i; ðA14Þ

and, hence, Eq. (A12) is proven.

4. Nonreciprocally interacting particles

Another example is the nonreciprocally interacting
particles that are realized in systems such as complex
plasma [3] and chemically [5,6] and optically active
colloidal matter [7,8]. The position of the particle ri ¼
ðxi; yi; ziÞ of an interacting system is given by

ṙi ¼
X
j

f ijðjri − rjjÞ; ðA15Þ

where the force f ijðjri − rjjÞ acting on the particle i from
the interaction with the particle j is assumed to be a

function of the interparticle distance jri − rjj. The force
can in general split into reciprocal and antireciprocal
contributions,

f ij ¼ f rijðjri − rjjÞ þ f aijðjri − rjjÞ; ðA16Þ

where f rijðjri − rjjÞ ¼ −f rjiðjri − rjjÞ and f aijðjri − rjjÞ ¼
f ajiðjri − rjjÞ are the reciprocal and antireciprocal contribu-
tions, respectively.
In the antireciprocal case f ij ¼ f aijðjri − rjjÞ, Liouville-

type theorem holds. Similar to the spin systems, the
continuity equation reads [where ∇i ¼ ð∂xi ; ∂yi ; ∂ziÞ]

∂ρ

∂t
¼ −

X
i

∇i · ðρṙiÞ ¼ −
X
i

½ð∇iρÞ · ṙi þ ρ∇i · ṙi�: ðA17Þ

The last term of Eq. (A17) can be shown to vanish:

ρ
X
i

∇i · ṙi ¼ ρ
X
ij

½∇i · f aijðjri − rjj� ¼ 0; ðA18Þ

since

X
ij

∇i · f aijðjri − rjj ¼
X
ij

∇j · f ajiðjrj − rijÞ

¼
X
ij

∇j · f aijðjri − rjjÞ

¼ −
X
ij

∇i · f aijðjri − rjjÞ: ðA19Þ

This proves the desired Liouville-type theorem,

∂ρ

∂t
þ
X
i

ð∇iρÞ · ṙi ¼ 0; ðA20Þ

for nonreciprocally interacting systems with antisymmetric
coupling.

APPENDIX B: ORDER-BY-DISORDER
PHENOMENA

1. All-to-all coupled model

We provide here the details of the analysis of order-by-
disorder phenomena occurring in both geometrically and
nonreciprocally frustrated systems. For concreteness, we
consider the dynamics of all-to-all coupled XY model
grouped into a few communities a ¼ A;B;C;…, following
the Langevin equation,

θ̇ai ¼ −
X
b

jab
Nb

XNb

j¼1

sinðθai − θbj Þ þ ηai ; ðB1Þ
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where hηai ðtÞi ¼ 0, hηai ðtÞηbj ðt0Þi ¼ σδabδijδðt − t0Þ. The
all-to-all coupled nature allows us to rewrite Eq. (B1) in
a single spin picture,

θ̇ai ¼ −
X
b

jabrb sinðθai − ϕbÞ þ ηai ; ðB2Þ

by introducing the order parameter ψa¼ð1=NaÞ
PNa

i¼1e
iθai ¼

raeiϕa .
As emphasized in the main text, in the absence

of stochasticity, the order parameter dynamics can take
different orbits ϕðtÞ ¼ ½ϕAðtÞ;ϕBðtÞ;…� when the inter-
community coupling is taken to be geometrically or non-
reciprocally frustrated, depending on their initial condition.
We will show below that this “accidental degeneracy” of
orbits is generically lifted by the presence of noise.
To proceed, we consider the dynamics of fluctuations

δθai ¼ θai − ϕa caused by noise. Assuming weak noise
strength, we linearize the stochastic equation of motion as

δθ̇ai ≈ −
X
b

jab cos½ϕaðtÞ − ϕbðtÞ�δθai þ ηai : ðB3Þ

As Eq. (B3) is linear, the probability distribution function
ρai ðδθai Þ can be computed analytically through a standard
approach of mapping the Langevin equation to the Fokker-
Planck equation [82] as [83,84]

ρai ½t; δθai ;ϕðtÞ� ¼
1ffiffiffi

π
p

wa½t;ϕðtÞ�
e−ðδθai Þ2=w2

a½t;ϕðtÞ�; ðB4Þ

with its width wa given by

w2
a½t;ϕðtÞ� ¼ 2σ

Z
t

0

dτe−2
R

t

τ
dτ0
P

b
jab cos½ϕaðτ0Þ−ϕbðτ0Þ�

when an initial condition is a perfectly magnetized
state, δθai ðt ¼ 0Þ ¼ 0. Especially in the case where Δϕab ¼
ϕa − ϕb converges to a constant value (which occurs, e.g.,
in a geometrically frustrated system and two-community
perfectly nonreciprocal system), the steady-state distribu-
tion has the width [82]

w2
aðt → ∞;ϕÞ ¼ σP

bjab cosΔϕab
: ðB5Þ

Let us now write down the order parameter dynamics
that are affected by the above fluctuations induced by noise.
From

ψ̇a ¼ ðṙa þ raiϕ̇aÞeiϕa ¼ i
Na

XNa

i¼1

θ̇ai e
iθai ; ðB6Þ

one obtains

ϕ̇a ¼ −
X
b

jab
Na

XNa

i¼1

rb
ra

sinðθai − ϕbÞ cosðθai − ϕaÞ þ η̄a

¼ −
X
b

j⋆ab½ϕðtÞ� sinðϕa − ϕbÞ þ η̄a ðB7Þ

that is governed by the renormalized couplings,

j⋆ab½ϕðtÞ� ¼ jab
rb½ϕðtÞ�
ra½ϕðtÞ�

hcos2δθai iϕðtÞ; ðB8Þ

which are, crucially, ϕ dependent. Here, the effective
noise for the macroscopic angle ϕa is given by
η̄a ¼ 1=ðraNaÞ

PNa
i¼1 η

i
a cos δθai ≈ ð1=NaÞ

PNa
i¼1 η

a
i that

follows hη̄ai ≈ 0, hη̄aðtÞη̄bðt0Þi ≈ ðσ=NaÞδabδðt − t0Þ, and
hhðδθai ÞiϕðtÞ ¼

R
dδθai ρ

a
i ½t;δθai ;ϕðtÞ�hðδθai Þ is the noise ave-

rage. In the second line of Eq. (B7), we have assumed that
the system self-averages, i.e., hhðδθai ÞiϕðtÞ ¼ð1=NaÞ

PNa
i¼1 ×

h½δθai ðtÞ� and used the property ρai ðδθai Þ ¼ ρai ð−δθai Þ. As
one sees by comparing with the deterministic case [Eq. (6) in
the main text], we find that the bare couplings jab has been
replaced by the renormalized, ϕ-dependent coupling j⋆abðϕÞ.
For later use, we expand Eq. (B7) in terms of δθai , giving

j⋆abðϕðtÞÞ ¼ jab
hcos δθbi iϕðtÞ
hcos δθai iϕðtÞ

hcos2δθai iϕðtÞ

≃ jab
1 − 1

2!
hðδθbi Þ2iϕ þ 1

4!
hðδθbi Þ4iϕ

1 − 1
2!
hðδθai Þ2iϕ þ 1

4!
hðδθai Þ4iϕ

×

�
1 − hðδθai Þ2iϕ þ

1

3
hðδθai Þ4iϕ

�

≃ jab

�
1 −

1

4
½w2

aðϕÞ þ w2
bðϕÞ�

þ 1

32
½5w4

aðϕÞ þ 2w2
aðϕÞw2

bðϕÞ þ w4
bðϕÞ�

�

≃ jab

�
WðϕÞ þ w4

aðϕÞ
8

�
; ðB9Þ

where

WðϕÞ ¼ 1 −
1

4
½w2

aðϕÞ þ w2
bðϕÞ�

þ 1

32
½4w4

aðϕÞ þ 2w2
aðϕÞw2

bðϕÞ þ w4
bðϕÞ�: ðB10Þ

Here, we have used the relation raðϕÞ ¼ hcos δθai iϕ in the
first line of Eq. (B9), expanded in terms of δθai in the second
line of Eq. (B9), and the result of the Gaussian integral,

hðδθaÞ2iϕ ¼ w2
aðϕÞ
2

; hðδθaÞ4iϕ ¼ 3w4
aðϕÞ
4

; ðB11Þ

in the third line of Eq. (B9).
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Below, we will show that Eq. (B7) generically exhibit an
OBDP in both geometrically and nonreciprocally frustrated
systems.

a. Geometrically frustrated case:
Communities on a tetrahedron lattice

Consider first a geometrically frustrated system that is
composed of four communities, which is all-to-all anti-
ferromagnetically coupled jab ¼ −j < 0 [Fig. 4(a) in the
main text]. We set the intracommunity ferromagnetic
coupling strength to be identical jaa ¼ j0 > 0 with a; b ¼
A;B;C;D and Na ¼ N, for simplicity. In the absence of
noise, the system is driven toward its energy minimum that
is accidentally degenerate because of the geometrical
frustration. To see this, define Sa ¼ ðSxa; SyaÞ ¼ ðcosϕa;
sinϕaÞ and observe that [36,39,40] the energy E can be
written as

EðϕÞ ¼ j
X
a;b

Sa · Sb ¼ j

�X
a

Sa

�
2

þ const: ðB12Þ

The ground state is given by the configuration that makesP
a Sa vanish. As illustrated in Fig. 4(a) in the main text,

for the case considered here, the ground state is accidentally
degenerate and is parametrized by an angle α and β as

ϕA� ¼ β; ϕB� ¼ π þ β;

ϕC� ¼ αþ β; ϕD� ¼ αþ π þ β; ðB13Þ

where the angle β parametrizes the degeneracy trivially
arising from the rotation symmetry, while α parametrizes
the accidental degeneracy arising from geometrical frus-
tration. The labels of the communities can be permuted.
Now, in the presence of noise (σ > 0), the width is given

by [see Eq. (B5)]

w2
aðϕÞ ¼

σ

j0 þ j½cos π þ cos αþ cosðαþ πÞ�
¼ σ

j0 þ j
; ðB14Þ

which is independent of the configuration α and is identical
for all communities. As a result, from Eq. (B9), one
finds that j⋆abðϕÞ ¼ −j⋆ ¼ const < 0 on the ground state
manifold, giving the macroscopic angle dynamics
(a; b ¼ A;B;C;D),

ϕ̇a ¼ j⋆
X
bð≠aÞ

sinðϕb − ϕaÞ þ η̄a; ðB15Þ

where hη̄aðtÞi ¼ 0 and hη̄aðtÞη̄bðt0Þi ¼ ðσ=NÞδabδðt − t0Þ.
Since this system obeys the fluctuation-dissipation theorem
[82], the system is mapped to a problem of four spins at

very low but finite temperature T ∼ σ=N. As we will derive
below (which is pointed out in Ref. [40], Sec. IV), the
distribution function for realizing the angle α in such a
system is given by Eq. (14) in the main text, reproduced
below for convenience,

ρssðαÞ ∝
1

j sin αj ; ðB16Þ

in the regime sin2 α ≫ σ=ðNjj⋆jÞ → 0. This shows that the
probability distribution is overwhelmingly concentrated
to a collinear configuration α� ¼ 0 or α� ¼ π, which is
nothing but an OBDP. This is attributed to the property
that, while the energy in generic configurations varies
quadratically in displacement from the ground state
configuration, there exists a special direction of displace-
ment around the collinear configuration α ¼ 0; π that the
energy varies quartically [40], making the fluctuations
in the collinear configuration large and therefore the
entropy large.
The first step to derive Eq. (B16) is to linearize the

equation of motion around the ground state configuration
ϕ� [given by Eq. (B13)]:

δ
˙
ϕ⃗ ¼ L̂ðαÞδϕ⃗þ η⃗; ðB17Þ

where

L̂ðαÞ¼ j⋆

0
BBB@

−1 1 −cosα cosα

1 −1 cosα −cosα

−cosα cosα −1 1

cosα −cosα 1 −1

1
CCCA ðB18Þ

characterizes the fluctuation dynamics, δϕ⃗ ¼ ðδϕA; δϕB;
δϕC; δϕDÞT ¼ ðϕA; ϕB; ϕC; ϕDÞT − ðϕA�; ϕB�; ϕC�; ϕD�ÞT
is the fluctuation, and η⃗ ¼ ðη̄A; η̄B; η̄C; η̄DÞ is the noise.
There are two zero (marginal) modes, corresponding to

fluctuation within the degenerate ground state manifold.
One is the Nambu-Goldstone mode δϕ⃗ ¼ ð1; 1; 1; 1ÞT
corresponding to global rotation [therefore changing
the parameter β in Eq. (B13)], while the other δϕ⃗ ¼
ð1; 1;−1;−1ÞT corresponds to changing the parameter α.
The finite noise that continuously excites these zero modes
gives rise to the diffusion of the probability distribution of α
and β. However, in the thermodynamic limit N → ∞, the
noise level and the diffusion constant are negligibly small.
In what follows, we will consider the timescales where this
diffusion process is negligible.
On top of the two zero modes, there are two relaxational

modes: one mode ð1;−1;−1; 1ÞT with a relaxation rate
λ1 ¼ −2j⋆ð1 − cos αÞ and another mode ð1;−1; 1;−1ÞT
with a relaxation rate λ2 ¼ −2j⋆ð1þ cos αÞ. The
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steady-state distribution of these fluctuation modes
(denoted by δϕ1 and δϕ2) is then given by

ρssðδϕ1; δϕ2; αÞ ∝ e−4j
⋆Nð1−cos αÞδϕ2

1
=σe−4j

⋆Nð1þcos αÞδϕ2
2
=σ:

ðB19Þ

Integrating out these fluctuations, we arrive at the distri-
bution function to realize the angle α as

ρssðαÞ ¼
Z

π

−π
dδϕ1

Z
π

−π
dδϕ2ρssðδϕ1; δϕ2;αÞ

≈
Z

∞

−∞
dδϕ1

Z
∞

−∞
dδϕ2ρssðδϕ1; δϕ2; αÞ

∝
Z

∞

−∞
dδϕ1e−4j

⋆Nð1−cos αÞδϕ2
1
=σ

×
Z

∞

−∞
dδϕ2e−4j

⋆Nð1þcos αÞδϕ2
2
=σ

∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos α
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos α
p ¼ 1

j sin αj : ðB20Þ

Here, note that the approximations that are employed are
justified when ðσ=NÞ ≪ jλ1;2j or sin2 α ≫ σ=ðNjj⋆jÞ → 0.
This derives Eq. (B16).

b. Nonreciprocally frustrated case: Two-community
stochastic XY model

We now turn to the nonreciprocally frustrated case. From
Eq. (B7), the dynamics of the angle difference Δϕ that
characterizes the spontaneous parity breaking is given by

Δϕ̇ ¼ −½j⋆ABðΔϕÞ þ j⋆BAðΔϕÞ� sinΔϕ

≃ −
�
2jþWðΔϕÞ þ j−

4
½w4

AðΔϕÞ − w4
BðΔϕÞ�

�
sinΔϕ;

ðB21Þ

with the width

w2
AðΔϕÞ ¼

σ

jAA þ j− cosΔϕ
; ðB22Þ

w2
BðΔϕÞ ¼

σ

jBB − j− cosΔϕ
: ðB23Þ

Note that the second term in Eq. (B21) (i.e., the entropic
torque that arises only when the nonreciprocity j− and the
noise σ > 0 are both turned on) becomes dominant in the
perfectly nonreciprocal case jþ ¼ 0.
We will focus here on the strong nonreciprocal case,

where the reciprocal component of the intercommunity
coupling jjþj is smaller than the nonreciprocal part jj−j;
i.e., jjþj ≪ jj−j. In particular, we will be focusing on the
regime where the nonreciprocity-induced entropic force
[the second term of Eq. (B21)] can become comparable to

the reciprocal component [the first term Eq. (B21)] at small
noise strength. By expanding Eq. (B21) with respect to jþ,
the Δϕ dynamics reads

Δϕ̇ ≃
�
−2jþ þ j0j2−σ2

2

cosΔϕ
ðj20 − j2−cos2ΔϕÞ2

�
sinΔϕ; ðB24Þ

for the identical intracommunity coupling case jAA ¼
jBB ¼ j0, deriving Eq. (23) [and Eq. (22) for the case of
jþ ¼ 0] in the main text. As thoroughly discussed in the
main text, Sec. III, the nonreciprocity-induced entropic
torque triggers a nonreciprocal phase transition [11] to a
chiral phase Δϕ� ≠ 0; π when the noise strength σ exceeds
a critical value.
It is worth noting that the nonreciprocal frustration-

induced torque does not always prefer the chiral phase (that
spontaneously breaks parity). To make the discussion
simple, let us consider below the perfectly nonreciprocal
case jþ ¼ 0. When the intracommunity coupling of com-
munity A(B) is sufficiently large compared to B(A), i.e.,
jAA ≫ jBB (jAA ≪ jBB), the community A(B) becomes
stiff such that the fluctuations of the community A(B)
get strongly suppressed to give w2

AðΔϕÞ < w2
BðΔϕÞ

[w2
AðΔϕÞ > w2

BðΔϕÞ] for arbitrary Δϕ [see Eqs. (B22)
and (B23)]. As a result, no configuration can satisfy the
condition that j⋆ABðΔϕÞ þ j⋆BAðΔϕÞ ≃ −ðj−=4Þ½w4

AðΔϕÞ −
w4
BðΔϕÞ�must vanish in the chiral phase [see Eq. (20) in the

main text]. In this case, the effective coupling always
satisfies j⋆ABðΔϕÞ < jj⋆BAðΔϕÞj [j⋆ABðΔϕÞ > jj⋆BAðΔϕÞj]
for arbitrary Δϕ when j− > 0. This leads the system to
select Δϕ� ¼ πð0Þ for j− > 0, corresponding to a static
phase Φ̇�ðtÞ ¼ 0, even in the absence of bare reciprocal
coupling jþ ¼ 0. All these features are demonstrated
numerically in Figs. 16(b) and 16(c).
Similar features are obtained when the noise strength is

different between different communities, i.e., when the
noise is characterized by hηaðtÞi ¼ 0, hηaðtÞηbðt0Þi ¼
σaδabδðt − t0Þ with σA ≠ σB. In this case, the width of
fluctuation of each community is given by

w2
AðΔϕÞ ¼

σA
jAA þ j− cosΔϕ

; ðB25Þ

w2
BðΔϕÞ ¼

σB
jBB − j− cosΔϕ

; ðB26Þ

leading to a similar situation to the above when the noise
strength is sufficiently different between the two commun-
ities. For example, when σA ≫ σB (σA ≪ σB) and
jAA¼ jBB¼ j0, w2

AðΔϕÞ>w2
BðΔϕÞ [w2

AðΔϕÞ < w2
BðΔϕÞ]

would always be satisfied for arbitrary Δϕ, leading to a
static phase with (anti)aligned configuration Δϕ� ¼ 0
(Δϕ� ¼ π).
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2. Spatially extended model

We consider here the spatially extended model
governed by Eqs. (30) and (31) (and illustrated in
Fig. 9) in the main text. In the presence of noise σ > 0,
the angle fluctuates around its mean value as
δθax ¼ θax − ϕa, where the macroscopic angle ϕa is defined
from the order parameter ψa ¼ raeiϕa ¼ ð1=NÞPx e

iθax

dynamics for the sublattice a ¼ A;B. In the Fourier space,

fluctuations δθa;k obey

∂t

�
δθA;k

δθB;k

�
¼ L̂kðΔϕÞ

�
δθA;k

δθB;k

�
þ
�
ηA;k

ηB;k

�
; ðB27Þ

where noise is characterized by hηa;kðtÞi ¼ 0,
hηa;kðtÞηb;k0 ðt0Þi ¼ σð2πÞdþ1δa;bδðt − t0Þδdðkþ k0Þ, and
the dynamical matrix is given in the case of d ¼ 2 as

L̂kðΔϕÞ ¼
�
jAAðcos kx cos ky − 1Þ − jAB cosΔϕ ðjAB=2Þ cosΔϕðcos kx þ cos kyÞ
ðjBA=2Þ cosΔϕðcos kx þ cos kyÞ jBBðcos kx cos ky − 1Þ − jBA cosΔϕ

�

≃

0
B@− jAA

2
k2 − jAB cosΔϕ jAB cosΔϕ

�
1 − k2

2

	
jBA cosΔϕ

�
1 − k2

2

	
− jBB

2
k2 − jBA cosΔϕ

1
CA: ðB28Þ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 16. Time crystalline order-by-disorder phenomena with different intracommunity coupling strength. The intracommunity
coupling strength is set to (a)–(c) jAA ¼ jBB ¼ 3, (d)–(f) jAA ¼ 5, jBB ¼ 2, (g)–(i) jAA ¼ 2, jBB ¼ 5. (a),(d),(g) Angle difference Δϕ
dynamics, where a solid (thin) line represents the dynamics in the presence (absence) of noise. (b),(e),(h) Effective coupling j⋆abðϕÞ.
(c),(f),(i) Phase ϕa dynamics. While in (a)–(c), the chiral phase with Δϕ� ¼ �π=2 that satisfies j⋆ABðΔϕ�Þ ¼ −j⋆BAðΔϕ�Þ is selected, in
(d)–(f) [(g)–(i)], as the effective coupling j⋆BAðΔϕÞ [j⋆ABðΔϕÞ] is more strongly renormalized than j⋆ABðΔϕÞ [j⋆BAðΔϕÞ], one always finds
j⋆ABðΔϕÞ < −j⋆BAðΔϕÞ [j⋆ABðΔϕÞ > −j⋆BAðΔϕÞ] that stabilizes the antialigned [aligned] phase characterized by the phase difference
Δϕ� ¼ π [Δϕ� ¼ 0]. These results are all consistent with our analytical analysis [Eq. (B21)]. We set the noise strength σ ¼ 1.5, the
number of spins NA ¼ NB ¼ 2000, and the intercommunity coupling strength jAB ¼ −jBA ¼ 1.
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The extension to higher spatial dimension d > 2 is straightforward, and the final expression is applicable for arbitrary
spatial dimensions. As in the previous sections, through a standard approach of mapping the Langevin equation to the
Fokker-Planck equation [82], the distribution function ρssðfδθA;k; δθB;kg;ΔϕÞ ¼

Q
k ρss;kðδθA;k; δθB;k;ΔϕÞ can be

obtained as a product of Gaussian distribution,

ρss;kðδθA;k; δθB;k;ΔϕÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ det Ξ̂k

q exp
h
−
1

2
½Ξ̂−1

k ðΔϕÞ�abδθk;aδθ−k;b
i
; ðB29Þ

where the correlation matrix is given by [where j� ¼ ðjAB � jBAÞ=2]

Ξ̂kðΔϕÞ≃
σ

k2ð2jþ cosΔϕþ j0k2Þ½4j0jþ cosΔϕ− 4cos2Δϕðj2− − j2þÞþ j20k
2�

×

�
j20k

4− 2cosΔϕj0ðj− −2jþÞk2þ 4cos2Δϕðj2−þ j2þÞ 2cosΔϕ½2cosΔϕðj2−þ j2þÞþ j−jþk2�
2cosΔϕ½2cosΔϕðj2−þ j2þÞþ j−jþk2� j20k

4þ 2cosΔϕj0ðj− − 2jþÞk2þ 4cos2Δϕðj2−þ j2þÞ

�
:

ðB30Þ

We have restricted ourselves to the case with jAA ¼ jBB ¼ j0 for simplicity. This gives the variance of fluctuations as

hδθaxδθbxiΔϕ ¼
X
k

Z
∞

−∞
dδθA;k

Z
∞

−∞
dδθB;kρss;kðδθA;k; δθB;k;ΔϕÞδθa;kδθb;−k ¼

1

4

X
k

Ξk;abðΔϕÞ: ðB31Þ

We briefly note that, while generically the correlation
matrix is inversely proportional to k2 (Ξ̂k ∝ k−2), correla-
tion matrix behave as Ξ̂k ∝ k−4 in the case of per-
fect nonreciprocity jþ ¼ 0. This feature, which implies
the diverging fluctuations hðδθaxÞ2i ∼

R
dkkd−1jδθk;aj2 ∼R

dkkd−1k−4 → ∞ at d < 4 (implying the destruction of
long-range order at d < 4) in the vicinity of a critical point,
is a characteristic of critical exceptional point, which is the
salient feature of nonreciprocal phase transitions [65,67].
Equipped with the distribution of fluctuations, we now

consider their impact on the macroscopic phase ϕa dynam-
ics. The dynamics of the order parameter reads

ψ̇a ¼ ðṙa þ iraϕ̇aÞeiϕa ¼ i
X
x

θ̇axeiθ
a
x : ðB32Þ

Plugging in the governing equation (30) and (31) in the
main text, we arrive at the same form as Eq. (11) in the main
text, reproduced below for convenience:

ϕ̇aðtÞ ¼ −
X
b

j⋆abðϕðtÞÞ sin½ϕaðtÞ − ϕbðtÞ� þ η̄aðtÞ: ðB33Þ

Here, the renormalized coupling is given by

j⋆ABðΔϕÞ¼
jAB

rAðΔϕÞ


cos

�
δθB

xþb̂
−δθAx

�
cosδθAx


Δϕ
; ðB34Þ

j⋆BAðΔϕÞ ¼
jBA

rBðΔϕÞ


cos

�
δθA

xþb̂
− δθBx

�
cosδθBx


Δϕ
; ðB35Þ

where h���iΔϕ¼
R Q

dδθAx δθBx ρðfδθAx ;δθBx g;ΔϕÞð�� �Þ is the
noise average with the configuration Δϕ [where ρðfδθAx ;
δθBx g;ΔϕÞ is the distribution to realize ðδθAx ; δθBx Þwith Δϕ]
and raðΔϕÞ ¼ hcos δθaxiΔϕ. η̄a is a macroscopic noise that
has the noise strength of σ=N. We have assumed that the
system self-averages.
We proceed by expanding Eqs. (B34) and (B35) in terms

of fluctuations as

j⋆ABðΔϕÞ ≃ jAB
h
WðΔϕÞ þ 1

4
hðδθAx Þ2i2Δϕ

i
; ðB36Þ

j⋆BAðΔϕÞ ≃ jBA
h
WðΔϕÞ þ 1

4
hðδθBx Þ2i2Δϕ

i
; ðB37Þ

where

WðΔϕÞ ¼ 1 −
1

2

h
�
δθAx

�
2

Δϕ þ


�
δθBx

�
2

Δϕ − 2



δθAx δθ

B
xþb̂


Δϕ

i
þ 1

24

h
�
δθAx

�
4

Δϕ þ


�
δθBx

�
4

Δϕ þ 12


�
δθAx

�
2
�
δθBx

�
2

Δϕ − 4


�
δθAx

�
3δθB

xþb̂


Δϕ

− 4


δθAx

�
δθB

xþb̂

�
3

Δϕ

i
: ðB38Þ
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The dynamics of Δϕ, which characterizes the parity-breaking order of the chiral phase [11], then follows:

Δϕ̇ ¼ −½j⋆ABðΔϕÞ þ j⋆BAðΔϕÞ� sinΔϕ

≃ −
�
2jþWðΔϕÞ þ j−

2
½hðδθAx Þ2i2Δϕ − hðδθBx Þ2i2Δϕ�

�
sinΔϕ: ðB39Þ

Further assuming jþ ≪ j−; j0, using Eq. (B31), we find

Δϕ̇ ≃
�
−2jþ þ j2−σ2 cosΔϕ

4j0

X
k;k0

j20k
02 − 2j2−cos2Δϕ

ð4j2−cos2Δϕ − j20k
2Þð4j2−cos2Δϕ − j20k

02Þk2k02
�
sinΔϕ; ðB40Þ

which derives Eq. (32) in the main text.
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