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The continued operation of the Advanced LIGO and Advanced Virgo gravitational-wave detectors is
enabling the first detailed measurements of the mass, spin, and redshift distributions of the merging binary
black hole population. Our present knowledge of these distributions, however, is based largely on strongly
parametric models. Such models typically assume the distributions of binary parameters to be super-
positions of “building block” features like power laws, peaks, dips, and breaks. Although this approach
has yielded great progress in the initial characterization of the compact binary population, the strong
assumptions entailed often leave it unclear which physical conclusions are driven by observation and
which by the specific choice of model. In this paper, we instead model the merger rate of binary black holes
as an unknown autoregressive process over the space of binary parameters, allowing us to measure the
distributions of binary black hole masses, redshifts, component spins, and effective spins with near-
complete agnosticism. We find the primary mass spectrum of binary black holes to be doubly peaked, with
a fairly flat continuum that steepens at high masses. We identify signs of unexpected structure in the
redshift distribution of binary black holes: a uniform-in-comoving volume merger rate at low redshift
followed by an increase in the merger rate beyond redshift z ≈ 0.5. Finally, we find that the distribution
of black hole spin magnitudes is unimodal and concentrated at small but nonzero values, and that spin
orientations span a wide range of spin-orbit misalignment angles but are also moderately unlikely to be
truly isotropic.
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I. BACKGROUND

The recent release of the third gravitational-wave transient
catalog (GWTC-3) [1] by the LIGO Scientific Collaboration
[2], Virgo Collaboration [3], and KAGRA Collaboration [4]
has increased the number of confident gravitational-wave
detections to 76 [5], with yet more candidates identified
in independent reanalyses of LIGO-Virgo data [7,8]. This
growing body of detections has pushed gravitational-wave
astronomy firmly into the catalog era; we can move beyond
interrogating the properties of individual binary mergers to
instead exploring the ensemble properties of the complete
compact binary population [6,9].
Most present-day analyses of the compact binary pop-

ulation adopt a strongly modeled approach, in which the

distributions of binary masses, spins, and redshifts are
assumed to follow specific parametric forms. The binary
black hole mass spectrum, for example, is commonly
assumed to be the superposition of power laws and/or
Gaussians [6,9–14]. The hyperparameters describing these
functional forms (e.g., power-law slopes and Gaussian
means and widths) are then measured using our catalog
of gravitational-wave detections.
This strongly modeled “building-block” approach has

yielded significant insight. We have learned, for example,
that the black hole merger rate is highest at m ≈ 10M⊙,
declining steeply towards larger masses but with a secon-
dary bump near 35M⊙ [6,9]. Black hole spins are small
but nonzero, with a wide range of misalignment angles
between spins and binary orbital angular momenta
[6,9,15,16]. In addition, the rate of binary mergers grows
as we look to higher redshifts [6].
At the same time, this approach has some less-desirable

downsides.
(i) First, our chosen functional form prescribes, from the

very outset, the set of possible population features.
Thus, it is not always clear which conclusions come
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from informative data and which are built, by
assumption, into the models themselves. Parame-
trized models including sharp features, for example,
are prone to “false alarms,” favoring the existence of
such features even when none exist [15].

(ii) Second, different models may yield very different or
even conflicting conclusions if they prescribe differ-
ent sets of features, further obscuring which con-
clusions are robust and which are model induced.

(iii) Finally, strongly parametrized models allow us to
search for “known unknowns” (e.g., is there a pair-
instability cutoff in the black hole mass spectrum?)
but do not let us search for the “unknown unknowns,”
truly unexpected features that might challenge our
astrophysical understanding of compact binary for-
mation and evolution. Several features in the binary
black hole population (a peak in the merger rate near
35M⊙ [9], a correlation between binarymass ratio and
spin [17,18], etc.), for example, were discovered
serendipitously only after a fortuitous choice ofmodel.

These concerns have spurred the development of
flexible methods that aim to characterize the compact
binary population while imposing few a priori assump-
tions regarding the form of the population. Examples
of these flexible approaches include modeling the dis-
tribution of binary parameters using splines [19–21],
piecewise-constant “binned” models [6,22–26], and
Gaussian mixture models [13,27,28], as well as non-
Bayesian methods that seek to identify clustering in
gravitational-wave catalogs [29,30].
In this paper, we will explore an alternative and com-

plementary approach, treating the merger rate of binary
black holes as an unknown autoregressive process defined
over masses, spins, and/or redshifts. Whereas all other
population models entail the use of hyperparameters to
specify the dependence of the merger rate on mass, spin,
and redshift, under our approach the merger rates at every
posterior sample are themselves the quantities that we
directly infer from data. This process allows us to character-
ize the compact binary distribution with a high degree
of agnosticism, assuming only a prior preference that the
merger rate be a continuous function of binary parameters.
This approach will allow us to confirm the robustness of
features previously identified using standard strongly para-
metrized models, as well as identify new features that might
otherwise be overlooked.
More specifically, our goals in this work are threefold:
(1) First, we present a flexible measurement of the

merger rate densities and probability distributions
over binary black hole masses, mass ratios, redshifts,
and spins.

(2) Inference of the binary merger rate is only a
first step. As we discuss further in Sec. VII,
a conceptually distinct and equally important step
is feature extraction: the subsequent identification of

features and assessment of their significance. For
strongly parametrized models, rate inference and
feature extraction are, by definition, performed
simultaneously. This is not the case for flexible
approaches like spline methods or our autoregressive
process, and so the importance of developing tech-
niques for feature extraction is particularly acute. For
each binary black hole parameter, we therefore seek
to methodically assess feature significance without
resorting to hyperparameters, but instead by calcu-
lating and comparing merger rates between different
regions of interest.

(3) Finally, our goal is to leverage our autoregressive
inference to provide new or extended strongly para-
metrized models that reflect our most up-to-date
understanding of the binary black hole population.
This goal serves two purposes. First, these updated
models may provide a robust and accessible point of
comparison between theory and observation. Second,
these strongly parametrized models can, in turn, be
adopted in traditional hierarchical analyses, helping to
confirm (or reject) possible features that appear in
more flexible analyses of the black hole population.

In Sec. II, we begin by motivating and defining autor-
egressive processes as a useful tool in the inference
of compact binary populations. In Secs. III–VI, we then
apply our method to study the distributions of masses,
redshifts, component spins, and effective spins among the
binary black hole population. Along the way, we system-
atically demonstrate feature extraction and discuss new
or expanded strongly parametrized models motivated by
our results. We conclude in Sec. VII by commenting on the
relationship between flexible and strongly parametrized
models and avenues for future work.

II. THE COMPACT BINARY POPULATION
AS AN AUTOREGRESSIVE PROCESS

A. Autoregressive processes

To help make our discussion concrete, consider the
problem of measuring the binary black hole primary mass
distribution. This amounts to measuring the differential
merger rate

dR
d lnm

≡ dN
dVcdtsd lnm

; ð1Þ

giving the number dN of mergers per unit comoving
volume dVc, per unit source-frame time dts, and per
logarithmic mass interval d lnm. For notational conven-
ience, we will use the shorthand RðθÞ≡ dR=dθ to denote
the merger rate density over parameters θ, e.g.,

RðlnmÞ≡ dR
d lnm

: ð2Þ
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The standard strongly parametrized approach involves
assuming some particular functional form for RðlnmÞ,
such as a superposition of power laws, Gaussians, and/or
truncations, and then measuring the parameters of these
functions [6,9–14]. Stepping back, however, we can think
more generally about the merger rate density RðlnmÞ that
we seek to measure.
In nature, there exists some underlying function that

describes the true mass spectrum of compact binaries; this
function is illustrated in cartoon form by the dark blue
curve in Fig. 1. We know nothing a priori about the exact
shape of this function. However, we can still attempt to
write down prior assumptions about this function’s likely
behavior. In Fig. 1, we hypothetically know the merger rate
Ri at some particular value lnmi. Given this knowledge,
what is our prior expectation on the merger rate at a new
point lnmiþ1? A reasonable expectation is that, if lnmi and
lnmiþ1 are close together (Scenario 1 in the top panel),
then the rates at these locations are likely similar as well.
In fact, in the limit that lnmi ¼ lnmiþ1, we should recover
Ri ¼ Riþ1. Conversely, if lnmi and lnmiþ1 are far
apart (Scenario 2), then the rates at each point need not
be similar at all.

This intuition forms the basis of an autoregressive
process prior. An autoregressive process ΨðxÞ is a stochas-
tic function whose value Ψi at some new point is related to
the values at all previous points by

Ψi ¼
Xp
j¼1

cjΨi−j þ wi: ð3Þ

Here, the fcjg are deterministic coefficients, and wi is a
random variable. Qualitatively, the coefficients fcjg govern
the degree to which ΨðxÞ “remembers” its past values,
while the parent distribution of fwig governs the degree to
which the function is allowed to randomly fluctuate. The
parameter p is called the “order” of the process, and
determines the smoothness of the resulting functions; an
autoregressive process of order p has p − 1 continuous
derivatives. Choosing order p ¼ 1 gives us the simplest
“AR(1)” autoregressive process, which obeys

Ψi ¼ ciΨi−1 þ wi: ð4Þ
We can adopt this language as a framework with which

to codify our intuition regarding possible merger rate

FIG. 1. Cartoon demonstrating the physical principle behind our autoregressive inference of the binary black hole population.
Consider a situation in which we know the differential merger rateRðlnmÞ at several different masses, up to some lnmi. Next, take some
new mass, lnmiþ1. What prior should we place on the merger rate at this new location? If lnmi and lnmiþ1 are close (Scenario 1),
then we expect the merger rates at this location to be reasonably close as well; we might, therefore, place a tight prior onRiþ1 about the
valueRi. If, on the other hand, lnmi and lnmiþ1 are distant (Scenario 2), the merger rates at each point are unlikely to be related, so we
might place a considerably less informative prior onRiþ1. This intuition is codified by choosing an autoregressive prior on lnRðlnmÞ,
such that the merger rate at any mass value has a Gaussian prior about the merger rate at the previous value, with variance related to the
separation between points.
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densities, considering the merger rate as a function of mass
to be of the form

RðlnmÞ ¼ reΨðlnmÞ; ð5Þ

where ΨðlnmÞ is an autoregressive process in lnm of order
p ¼ 1. This implies that, if we know the merger rateRi−1 at
one mass location, then we take the rate at a new location
lnmi to be probabilistically given by the relation

lnRi − ln r ¼ ci½lnRi−1 − ln r� þ wi; ð6Þ

for some choice of ci and wi (discussed further below). The
quantity r sets the mean merger rate; it is the departures
from ln r that are described via an AR(1) model. Note also
that it is the log of the merger rate, not the merger rate itself,
that is modeled as an AR(1) process. This choice guaran-
tees that predicted merger rates are everywhere positive,
but it has the downside that our inferred merger rate can
never strictly go to R ¼ 0 (corresponding to lnR → −∞);
see Appendix B.
We take ci and wi to be of the form

ci ¼ e−Δi=τ ð7Þ

and

wi ¼ σð1 − e−2Δi=τÞ1=2ni; ð8Þ

where Δi ¼ lnmi − lnmi−1 is the distance between mass
locations and ni is a random variable drawn from a unit
normal distribution: ni ∼ Nð0; 1Þ. The parameter σ func-
tions to rescale the random variable ni and thus controls the
allowed variance of the merger rate. The parameter τ,
meanwhile, defines the mass scale over which the mass
spectrum remains significantly correlated with itself. In the
limit that Δi ≪ τ, Eq. (6) demands that lnRi → lnRi−1.
In the opposite limit that Δi ≫ τ, we instead have lnRi
drawn randomly fromNðln r; σÞ, with no memory of earlier
merger rate values. The exact forms of Eqs. (7) and (8)
are chosen to ensure that σ2 and τ indeed control the
variance and autocorrelation length of the process; see
Appendices A and B for more information about these
expressions.
Figure 2 illustrates several random AR(1) processes

ΨðxÞ, generated with various choices of τ and σ.
Processes with large τ (top panel) exhibit much stronger
correlations between adjacent points, yielding larger
observed scale lengths than those with smaller τ (bottom
panel). Processes with large σ, meanwhile, traverse a much
larger vertical range than processes with small σ. Note that
these functions are continuous but do not have well-defined
first derivatives. If we wanted to consider functions
with continuous first derivatives, we could instead adopt
“AR(2)” processes of order p ¼ 2. We continue with an

AR(1) process, however, in order to better capture any
sharp or nondifferentiable features in the binary black hole
population that could be missed by models that require
continuous derivatives.

B. Hierarchical inference with an autoregressive prior

Consider a set of Nobs gravitational-wave detections
with sets of posterior samples fλIg on the properties
of each event I. The likelihood that our data, denoted
fdg, arise from an underlying population described by Λ
is [31–34]

pðfdgjΛÞ ∝ e−NexpðΛÞ
YNobs

I¼1

�
RdðλI;j;ΛÞ
ppeðλI;jÞ

�
samples j

: ð9Þ

Here, the product is taken over detected events I, and
the expectation value is taken over posterior samples j for
each event. The quantity ppeðλI;jÞ is the prior probability
assigned to each posterior sample under parameter estima-
tion, while

Rdðλ;ΛÞ ¼
dN
dtddλ

ðλ;ΛÞ ð10Þ

is the detector-frame merger rate density, to be evaluated at
each posterior sample. We use semicolons to indicate that
Rdðλ;ΛÞ is a function of the population model Λ but not a
density over Λ. Note also that Rdðλ;ΛÞ is not a volumetric
density, as in Eq. (1). If redshift z is a parameter in λ such

FIG. 2. Examples of various autoregressive processes ΨðxÞ.
Each curve is random draw from an AR(1) process, subject to
different autocorrelation lengths τ and standard deviations σ;
see Eqs. (4), (7), and (8). The top panel shows example
autoregressive processes with large τ, while the bottom panel
illustrates two processes with short τ. In Secs. III–VI, we model
the mass, redshift, and spin distributions of binary black holes
assuming they are each describable as unknown AR(1) processes.
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that Rd is a merger rate per unit redshift, then Eqs. (1)
and (10) are related by

Rdðλ;ΛÞ ¼ Rðλ̃; z;ΛÞ dVc

dz
ð1þ zÞ−1; ð11Þ

where λ̃ is the set of all binary parameters excluding z and
Rðλ̃; z;ΛÞ is the volumetric merger rate density as evalu-
ated at redshift z. The factor dVc=dz is the differential
comoving volume per unit redshift, while the factor
ð1þ zÞ−1 is needed to convert between source-frame and
detector-frame times.
Equation (9) additionally depends on NexpðΛÞ, the

expected number of detections over our observation time
Tobs given the population Λ. We evaluate NexpðΛÞ using a
set of successfully recovered signals injected into
LIGO and Virgo data [6,35]. If pinjðλÞ is the reference
probability distribution from which these injections were
drawn, then [36]

NexpðΛÞ ≈
Tobs

Ninj

X
found

Rdðλinj;i;ΛÞ
pinjðλinj;iÞ

; ð12Þ

where Ninj is the total number of injections performed,
detected or otherwise, and Tobs is our total search time. The
detector-frame rate Rdðλinj;i;ΛÞ at the location of each
injection can, once again, be related to the underlying
volumetric rate using Eq. (11).
The critical ingredients underlying Eqs. (9) and (12)

are the differential rates RðλI;j; z;ΛÞ and Rðλinj;i; z;ΛÞ at
the locations of every posterior sample and every found
injection. In the usual strongly parametrized approach, we
obtain these quantities by assuming some functional form
for Rðλ; z;ΛÞ. Here, our goal is to not assume a particular
functional form for the differential rate, but to directly infer
the merger rate at every posterior sample and every found
injection using our autoregressive prior. In adopting this
approach, we have rid ourselves of (nearly) all ordinary
hyperparameters. Instead, the merger rates at every
posterior sample and every injection are themselves the
parameters that we directly infer from the data. This
results in a rather large-dimensional parameter space. If
we have Nobs events (each with Nsamp posterior samples)
and Ninj injections, we are directly inferring the binary
merger rate at NobsNsamp þ Ninj discrete locations. The
form of Eq. (6), however, imposes an almost equally large
number of constraints, ensuring that the inference prob-
lem remains tractable.
We have not quite discarded all hyperparameters: We

still need to determine the variance σ and autocorrelation
length τ associated with our autoregressive rate prior.
Rather than fix σ and τ, we hierarchically infer them as
well, allowing our data to dictate the characteristic length
scale and size of features present in the binary black hole

population. In Appendix B, we derive and discuss the priors
we place on σ and τ. To obtain physically meaningful
priors, we approach the problem indirectly, considering not
constraints on σ and τ themselves but instead on allowed
variations in the black hole merger rateRðλÞ; these choices
then induce priors on σ, τ, and the ratio σ=

ffiffiffi
τ

p
.

It is worthwhile to compare our methodology to other
flexible approaches appearing in the literature. One similar
approach is the spline-based method appearing in
Refs. [19–21]; this model proceeds by first defining
merger rates over a discrete set of “knot” locations and
then constructing a spline interpolant between these knots.
The rates at each knot location may themselves be linked
via a Gaussian process prior or other regularization
schemes [20]. The “binned Gaussian process” models in
Refs. [6,22–26] operate similarly. In this approach, a
merger rate is again defined across a discrete grid of points
and interpolated, but now assuming that the merger rate is a
piecewise constant between grid points rather than a spline.
A primary methodological difference between these

approaches and ours is that we do not perform interpola-
tion: The parameters governing our models are the direct
merger rates at each point of interest rather than the rates
defined over some reference grid. Our autoregressive model
also behaves in ways that make it complementary to these
other approaches. Because spline interpolants are continu-
ous in their derivatives, the spline-based approaches above
are suitable for identifying smooth trends in the data but
may struggle to resolve sharp features or features at the
same scale as the knot separations. The continuity and
differentiability imposed by spline models can additionally
sometimes give rise to oscillatory “ringing” that depends on
the precise choice of knot locations [21,37]. Our AR(1)
model requires no differentiability, however, avoiding this
oscillatory behavior. The lack of a reference grid also
means that we require no a priori choice of scale. This
freedom, however, greatly boosts the computational cost
of our approach and gives rise to possible instabilities in
the hierarchical likelihood; this instability is described in
Appendix B. Even with the flexibility afforded by an AR(1)
process, there remain limitations on the degree to which our
model can recover discontinuously sharp features; see
Appendix C for further discussion.
We implement our autoregressive model using jax [38]

and numpyro [39,40], which enable compilation and
autodifferentiation of our likelihood. We perform our
Bayesian inference using numpyro’s implementation of
the NUTS (“No U-Turn Sampler”) algorithm [41], a variant
of Hamiltonian Monte Carlo (HMC) sampling [42]. As
noted above, our autoregressive models actually comprise a
vast number of latent parameters: one per posterior sample
and found injection. In practice, this amounts to approx-
imately 2.5 × 105 parameters for the analyses presented in
this paper. Given this extremely high-dimensional space,
the computational acceleration and sampling efficiency
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afforded by autodifferentiation and HMC methods is
critical. Further details regarding our hierarchical inference,
including the exact data and priors used, are given in
Appendix B.

III. STOP ONE: MASSES

We first use our autoregressive model to investigate the
distribution of binary black hole primary masses m1 and
mass ratios q. We consider the merger rate to be the
combination of two parallel autoregressive processes,
Ψðlnm1Þ and ΦðqÞ, that capture the dependence of the
merger rate on both lnm1 and q:

Rðlnm1; q; χ1; χ2; cos θ1; cos θ2; zÞ

¼ r½eΨðlnm1ÞeΦðqÞ�
�

1þ z
1þ 0.2

�
κ

pðχ1; χ2; cos θ1; cos θ2Þ:

ð13Þ

We fit for both Ψðlnm1Þ and ΦðqÞ simultaneously,
allowing each process to possess its own variance and
autocorrelation length.
While our focus in this section is on the mass distribution

of binary black holes, when measuring the population
distribution of any one parameter it is usually important to
simultaneously fit the distributions of other parameters, like
spin magnitudes χi, spin-orbit misalignment angles θi, and
redshifts. There is no fundamental reason why the distri-
butions over all binary parameters cannot be fit as simul-
taneous autoregressive processes. Since each additional
AR(1) process introduces a fairly high computational cost,
however, for simplicity we will fit the “leftover” redshift
and spin distributions by falling back on ordinary para-
metrized models. We assume that the merger rate evolves as
ð1þ zÞκ for some unknown index κ [43] and that compo-
nent spins are independently and identically distributed
with a probability distribution pðχ1; χ2; cos θ1; cos θ2Þ of
the form given in Appendix D; these redshift and spin
distributions are hierarchically fit alongside our autore-
gressive mass model. Finally, note that our model in
Eq. (13) is presumed to be separable, with no correlations
between the masses, mass ratios, and spins of binary
black holes.

A. Features in the black hole mass distribution

The top panel of Fig. 3 shows our autoregressive
measurement on the merger density rate of binary black
holes as a function of primary mass, evaluated at q ¼ 1 and
z ¼ 0.2 and marginalized over spin degrees of freedom.
Each blue trace shows a single posterior sample for
Rðlnm1Þ, [44] while the thick and thin black curves mark
a running median and central 90% credible bounds,
respectively. We note that our presentation of the mass
spectrum, conditioned on some particular reference values

of mass ratio and redshift, is slightly unusual; it is more
common to show a mass distribution that has been fully
marginalized over other parameters. When marginalizing a
merger rate over one or more parameters, however, the
result can show extreme systematic dependence on the
exact model presumed for these marginalized parameters,
particularly across regions of parameter space that are not
well measured. An extreme example can be found in
Ref. [6], in which the fully marginalized binary neutron
star merger rate can vary by 2 orders of magnitude
depending on the mass model used. Our approach in this
paper is to minimize such systematics by instead quoting
differential merger rates at well-measured locations in
parameter space (e.g., q ¼ 1 and z ¼ 0.2); this approach
maximizes precision and best enables comparison to
predictions between observation and theory.
Returning to Fig. 3, we see three possible features in the

black hole primary mass spectrum:
(1) A global maximum at m1 ≈ 10M⊙. The binary

merger rate appears to be maximized at m1 ≈
10M⊙ primary masses, falling off with both lower
and higher primary masses. We can quantify the
significance of this feature by computing the fraction
of posterior samples that exhibit a systematic peak
in this neighborhood. To do so, we compute and
compare the average merger rates across three bins:
7.5–9M⊙, 9–11M⊙, and 11–13.5M⊙ (chosen to
have roughly equal logarithmic widths). We regard
a “peak” as a case when the averaged merger rate
in the middle interval is higher than the averaged
merger rates in both adjacent bins. As shown in the
top panel of Fig. 4, we find that 96% of our samples
meet this criterion and exhibit a systematic peak
near 10M⊙.

(2) A local maximum at m1 ≈ 35M⊙. We can again
quantify the significance of this feature by compar-
ing the average rates across three bins: 20–28M⊙,
28–40M⊙, and 40–55M⊙. As shown in the middle
panel of Fig. 4, 94% of our posterior draws yield
higher averaged merger rates in the 28–40M⊙ range
than in both adjacent bins. Thus, both the 10M⊙ and
35M⊙ maxima have roughly equal significance;
although neither is unambiguously required by the
data, both are favored to exist at greater than 90%
credibility.

(3) Steepening of the continuum above 40M⊙. Between
the 10M⊙ and 35M⊙ maxima is a large, relatively flat
continuum. Above the 35M⊙ maximum, the con-
tinuum appears to steepen, falling off more rapidly
with increasingmass.Wequantify the evidence for this
steepening by computing and comparing the mean
power-law slope of the black hole merger rate above
and below the 35M⊙ maximum. From each posterior
sample, we extract the merger ratesRðlnm1Þ near 15,
25, 45, and85M⊙; these rates are then used to compute
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the power-law indices characterizing the middle and
high end of the mass spectrum:

αmid ¼
lnRð25M⊙Þ − lnRð15M⊙Þ

lnð25M⊙Þ − lnð15M⊙Þ
ð14Þ

and

αhigh ¼
lnRð85M⊙Þ − lnRð45M⊙Þ

lnð85M⊙Þ − lnð45M⊙Þ
: ð15Þ

We write Rð25M⊙Þ, for example, to indicate the
average merger rate in a 1M⊙ window around
25M⊙. Using window-averaged rates in this fashion
enables more reliable estimates of representative
power-law indices due to the rapid oscillations ex-
hibited by individual Rðlnm1Þ traces. The joint
distribution of both power-law slopes is plotted in
the lower panel of Fig. 4. In the 15–25M⊙ interval, we
find an average power-law index αmid ¼ −1.1þ2.7

−2.6 ,
while in the 45–85M⊙ range, we find αhigh ¼
−3.8þ2.6

−2.7 . We identify a preference for steepening,

FIG. 3. Top panel: binary black hole merger rate as a function of primary mass, inferred nonparametrically under an autoregressive
prior. The merger rate is evaluated at mass ratio q ¼ 1 and redshift z ¼ 0.2, and marginalized over spins, following the model defined in
Eq. (13). The solid black trace marks the mean inferred Rðlnm1Þ as a function of m1, while the lighter black traces bound our central
90% credible bounds. Individual posterior draws on Rðlnm1Þ are shown via light blue traces. Three features naturally emerge in the
inferred mass distribution: a global maximum in the merger rate atm1 ≈ 10M⊙, a secondary maximum atm1 ≈ 35M⊙, and an otherwise
smooth continuum that steepens above 40M⊙. Each of these three features is exhibited by approximately 90% of posterior draws.
Bottom panel: comparison between our autoregressive inference (blue band) and results obtained using the strongly parametrized
POWERLAW+PEAK model in Ref. [6] (red). Rates are again evaluated at q ¼ 1 and z ¼ 0.2, and marginalized over spin. Each band
encompasses the central 90% credible region inferred using the given model. Both approaches give consistent estimates of the merger
rate at m1 ≈ 10M⊙, as well as the merger rate in the 30 − 70M⊙ interval. In order to match these rates, though, we see that the
parametrized model is forced to overestimate the merger rate between 15 and 30M⊙, as well as the merger rate below 10M⊙.
Furthermore, our autoregressive model shows no indication of a sharp cutoff in the binary mass distribution at or above 80M⊙ (this
feature is included a priori in the strongly parametrized model). A simple fit to our median inferred rate, using the parametric form of
Eq. (16), is shown via the black dotted curve.
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with αhigh < αmid, in 89% of samples, although this
behavior is not strictly required by the data.

B. Discussion

The significances of the 10M⊙ and 35M⊙ peaks, as
computed here, are similar to but more conservative than
significance estimates presented elsewhere. A strongly
parameterized analysis presented in Ref. [6] identifies a
35M⊙ excess at effectively 100% credibility, and an
analysis in the same study using splines to measure
deviations from an ordinary power law finds upward
fluctuations at 10M⊙ and 35M⊙ with greater than 99%
credibility (see also Refs. [19,20]). Reference [37] alter-
natively explores the frequency with which apparent peaks
might arise purely from random counting statistics due to
our still-moderate number of binary black hole detections.
By repeatedly drawing realizations of 69 events from a
peakless power-law population, that study finds the
observed 10M⊙ and 35M⊙ peaks to be more statistically
significant than over 99% of false peaks arising from
random clustering.
The difference between these significance estimates and

ours is likely twofold. First, these significance estimates
test slightly different features; an upward fluctuation
relative to a power law does not necessarily indicate a
local maximum but can also be caused by a plateau or
change in slope. Second, by virtue of its extreme flexibility,
our autoregressive prior likely maximizes the variance in
our Rðlnm1Þ measurements, slightly diminishing our
confidence in any given feature. We note that our assess-
ment of feature significance does not depend on the
particular choice of reference mass ratio and redshift
adopted in Fig. 3; different reference values would rescale
each merger rate by a hyperparameter-dependent constant,
which cancels when subsequently taking ratios between
rates as in Fig. 4.
In addition to the 10M⊙ and 35M⊙ maxima, other

studies have noted the possible existence of other features
in the primary mass spectrum, namely, additional maxima
or minima in the 15–25M⊙ range [6,13,20,45]. We do not
see evidence for any such features here, however, indicating
that any additional features are likely prior dependent and
consistent with random clustering of a still-small number of
observations. References [6,19,20,37] note a somewhat
significant dip in the mass spectrum, relative to a power
law, near 14M⊙. We interpret this result not as a local
minimum but just as a flattening of the power-law index at
lower masses, as seen in Fig. 3 and discussed further below.
Additionally, various studies have searched for the presence
of a high-mass cutoff in the black hole mass spectrum
[6,9,10,12,24,25,46–48], possibly due to the occurrence of
pair-instability supernova [49]. In Ref. [6], for example, it is
inferred that if such a cutoff exists, then it must occur at
m1 > 78M⊙ at 95% credibility. Our analysis, however,
shows no indication of a cutoff in the black hole mass

FIG. 4. Tests quantifying the significance of features identified
in Fig. 3. Top panel: ratios between the average merger rate across
9M⊙ < m1 < 11M⊙ and in adjacent lower- and higher-mass
intervals. If a peak is present near 10M⊙, both ratios should be
greater than 1; this is true for 96% of our samples. Middle panel:
similarly, ratios between the average merger rate across 28M⊙ <
m1 < 40M⊙ and in adjacent bands. A peak near 35M⊙ is present
in 94% of samples. Bottom: implied power-law indices character-
izing the 15–25M⊙ and 45–75M⊙ intervals (αmid and αhigh,
respectively). We find that 89% of samples show a steepening in
the mass spectrum, with αhigh < αmid.
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spectrum, instead recovering a distribution that continues to
smoothly decline out to m1 ≈ 100M⊙. Note that the slight
increase in the variance of R seen near 100M⊙ marks a
reversion to the prior in the region m1 ≳ 100M⊙ where we
have little data.
It is valuable to compare our autoregressive results to

measurements made using standard strongly parametrized
models, in order to identify regions where strongly para-
metrized models may fail to capture features in the data and
to guide the iterative development of improved models
going forward. In the bottom panel of Fig. 3, we compare
our autoregressive model of the binary merger rate
(blue) with results obtained under the POWERLAW+PEAK

model [10] presented in Ref. [6]. Both models identify an
excess of mergers near 35M⊙, and both measure approx-
imately consistent merger rates near 10M⊙. We see two
signs of tension, however. First, the POWERLAW+PEAK

model otherwise adopts a single unbroken power law; in
order to match the merger rate at both low ð10M⊙Þ and high
ð≥30M⊙Þ masses, it is therefore forced to overestimate
the merger rate in the 15–30M⊙ range. This result is
consistent with the downward perturbation identified by
spline-based methods in this region [6,19,20,37]; this
downward perturbation may not be caused by a local
minima in the mass spectrum but just a flattening of the
power-law index at lower masses.

C. Suitable parametric model

In cases where a strongly parametrized phenomenologi-
cal model is needed, our autoregressive result suggests that
a sufficient choice is a model comprising two Gaussian
peaks and a broken power law, with a probability density

pðm1Þ ¼ fp;1Nðm1jμm;1; σm;1Þ þ fp;2Nðm2jμm;2; σm;2Þ
þ ð1 − fp;1 − fp;2ÞΓðm1Þ: ð16Þ

Here, we use Nðm1jμ; σÞ to signify a normalized Gaussian
distribution with mean μ and standard deviation σ, and
Γðm1Þ to denote a broken power law tapered towards zero
at low masses:

Γðm1Þ ∝

8>>>>><
>>>>>:

e−
ðm1−mminÞ2

2δm2

�
m1
mb

�
α1 ðm1 < mminÞ�m1

mb

�
α1 ðmmin ≤ m1 < mbÞ�m1

mb

�
α2 ðmb ≤ m1 < mmaxÞ

0 ðelseÞ;

ð17Þ

with a proportionality constant chosen to enforceR
Γðm1Þdm1 ¼ 1. A least-squares fit against our mean

inferred lnRðlnmÞ gives best-fit parameters

μ1 ¼ 10.0M⊙; μ2 ¼ 33.4M⊙;

σ1 ¼ 1.1M⊙; σ2 ¼ 4.2M⊙;

fp;1 ¼ 0.75; fp;2 ¼ 0.07;

α1 ¼ −2.7; α2 ¼ −4.2;

mmin ¼ 12.9M⊙; δm ¼ 0.6M⊙;

mb ¼ 42.7M⊙; mmax ¼ 100M⊙: ð18Þ

The corresponding distribution pðlnm1Þ ¼ pðm1Þm1 is
shown as a dotted line in Fig. 3. Note that this fit
approximates the fully marginalized primary mass distri-
bution and is thus valid at any choice of q, z, etc.

D. Features in the black hole mass-ratio distribution

Compared to the primary mass distribution, we resolve
relatively little information about the distribution of black
hole mass ratios. The top panel of Fig. 5 illustrates our
constraints onRðqÞ, evaluated at z ¼ 0.2 andm1 ¼ 20M⊙,
and integrated over component spins. The only feature that
manifests in Fig. 5 is a possible preference for larger q.
As above, we can compare integrated merger rates in two
bands, 0.5 ≤ q ≤ 0.6 and 0.9 ≤ q ≤ 1, to quantify the
significance of this feature. We find that the merger rate
in the high-q interval is greater than the rate in the low-q
interval for 90% of samples, such that the binary black hole
population likely favors equal mass ratios.
In the lower panel of Fig. 5, we compare our results

with the strongly parametrized measurements presented in
Ref. [6] using the POWERLAW+PEAK model, in which the
mass ratio distribution is modeled as a power law with a
primary-mass-dependent truncation:

pðqjm1Þ ∝ Sðq;m1Þqβq : ð19Þ

Here, Sðq;m1Þ is a tapering function that sends pðqjm1Þ to
zero when q < mmin=m1 for some mmin. Both results are
again evaluated at z ¼ 0.2 and m1 ¼ 20M⊙, and integrated
over black hole spins. Other than the truncation below
q ≈ 0.2 (imposed in Ref. [6] as an a priori modeling
choice), both sets of results are broadly consistent. In the
strongly parametrized analysis of Ref. [6], it is found that
βq > 0 with 92% credibility, comparable to our signifi-
cance estimate above [50].

IV. STOP TWO: REDSHIFTS

Next, we investigate the redshift distribution of binary
black holes. In most analyses, the redshift dependence of
the binary black hole merger rate is presumed to follow
a power-law form: RðzÞ ∝ ð1þ zÞκ for some index κ
[6,9,43,48,51,52]. Under this model, it has been concluded
that the binary black hole merger rate systematically grows
with redshift at a rate consistent with star formation in the
local Universe [6]. Here, we instead model the redshift
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dependence of the black hole merger rate as an autore-
gressive process, searching for any features that might be
missed under a more strongly parametrized approach. We
simultaneously measure the mass and component spin
distributions by falling back on the strongly parametrized
models described in Appendix D. Together, our model is of
the form

Rðlnm1; q; χ1; χ2; cos θ1; cos θ2; zÞ

¼ r
fðm1; qÞ

fð20M⊙; 1Þ
eΨðzÞpðχ1; χ2; cos θ1; cos θ2Þ: ð20Þ

A. Features in the black hole redshift distribution

The left panel of Fig. 6 shows our resulting inference on
the binary merger rate as a function of redshift, evaluated at
m1 ¼ 20M⊙ and q ¼ 1 and integrated across spins. Blue
traces show individual draws from our posterior, the solid
black curve marks the running median rate, and thin gray
lines denote central 90% credible bounds on the merger
rate at each redshift. The right panel of Fig. 6 compares
these results (in blue) to the results obtained in Ref. [6]
using the strongly parametrized power-law model for the
black hole merger rate. Both approaches yield consistent
estimates of the merger rate at z ≈ 0.3 and z ≈ 1, but our
autoregressive result suggests that the intervening evolu-
tion is not necessarily well modeled by a power law.
Instead, our result is consistent with a “sigmoid” shape
displaying the following features:
(1) A nonevolving, uniform-in-comoving-volume rate

below z ≈ 0.4. At the lowest redshifts, the data do
not require the merger rate to evolve with redshift.
Instead, our autoregressive results are consistent
with a rate that remains constant out to z ≈ 0.4.
To gauge the significance of this feature, we com-
pute and compare the mean merger rates in two
intervals: 0.1 < z < 0.2 and 0.3 < z < 0.4. As
shown in the left panel of Fig. 7, we find these
mean rates to be consistent with one another, with
the mean rate in the 0.3 < z < 0.4 interval exceed-
ing the rate in the 0.1 < z < 0.2 interval only 53% of
the time.

(2) A rise in the merger rate between z ≈ 0.4 and 0.8.
Beyond redshift z ≈ 0.4, however, the merger rate is
required to increase by up to an order of magnitude
by z ≈ 0.8. We quantify the significance of this
rise by comparing the mean merger rate in the
range 0.1 < z < 0.2 to the mean rate in the range
0.7 < z < 0.8. As shown in the right panel of Fig. 7,
the mean rates in these high- and low-redshift
intervals are confidently unequal, with the 0.7 <
z < 0.8 merger rate exceeding the 0.1 < z < 0.2
rate 93% of the time. Beyond redshift z ≈ 1, the
absence of informative data causes our measurement
to asymptote back towards the autoregressive
prior, yielding expanding error bars towards higher
redshifts.

B. Discussion

Other studies employing flexible nonparameteric analy-
ses have also obtained results indicating a possible tension
with a ð1þ zÞκ power law. Reference [53] explored the use
of population models composed of “Green’s-function”-like
delta functions as a tool with which to diagnose the
performance of strongly parametrized models. In that work,
the likelihood is found to be maximized when RðzÞ is
modeled as a sequence of delta functions that initially
decrease in height below z ≈ 0.13, followed by an elevated

FIG. 5. Top panel: merger rate of binary black holes as a function
of mass ratio, evaluated atm1 ¼ 20M⊙ and z ¼ 0.2, and integrated
over possible spins, following Eq. (13). The thick and thin black
lines mark the mean and central 90% bounds on RðqÞ, while thin
blue traces show individual draws from our posterior onRðqÞ. We
see a preference for an increasingmerger rate as a function of q, but
this behavior is not strictly required. Bottom panel: comparison
between RðqÞ as inferred by our autoregressive model (blue) and
the strongly parametrized analysis ofRef. [6] (red),which assumes a
power-law dependence on q with a truncation in the merger rate
belowq ¼ mmin=m1 for someminimummassmmin. The two results
are broadly consistent, although under our autoregressivemodel,we
find reduced evidence for a merger rate that increases with larger q.
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but flat merger rate in the range 0.2≲ z≲ 0.5 that then
more sharply rises between 0.5≲ z≲ 0.75; see their Fig. 5.
Other than the initially decreasing merger rate, which we do
not recover, these results are consistent with the behavior
we see in Fig. 6. Reference [20], in turn, measured the
redshift-dependent merger rate using a set of basis splines
to capture deviations from a ð1þ zÞκ power law. That work

also recovered a largely constant merger rate density below
z ≈ 0.4, followed by a steeper increase in the merger rate
out to z ≈ 1; see their Fig. 8.
If real, the steplike structure in the redshift-dependent

merger rate could arise from a variety of effects. The
redshift-dependent merger rate RðzÞ is generally modeled
by convolving an estimate of the metallicity-dependent

FIG. 6. Left panel: binary black hole merger rate as a function of redshift, inferred nonparametrically using an autoregressive process
prior. The merger rate is evaluated at a primary massm1 ¼ 20M⊙ and mass ratio q ¼ 1, and integrated over black hole spins. Light blue
traces show individual draws from our posterior, while the black and gray curves denote a running median and central 90% credible
bounds, respectively. Right panel: comparison between our nonparametric result (blue) and the result obtained in Ref. [6] when
assuming that the merger rate evolves as ð1þ zÞκ for an unknown index κ. Both bands denote 90% credible bounds. We see that both
approaches recover similar merger rates at z ≈ 0.3 and z ≈ 1, and both indicate that the black hole merger rate systematically grows with
redshift. Our autoregressive result, however, suggests that this growth may not be well modeled by a power law but instead by a slowly
growing or constant merger rate that begins to evolve more sharply only beyond z ≳ 0.4. The dashed black curve, for example, shows the
result of a simple least-squares fit to our median inferred merger rate using the sigmoid model defined in Eq. (22). A broken power law,
as in Eq. (21), also yields a good fit at z≲ 0.8.

FIG. 7. Left panel: comparison between the mean merger rate across the interval 0.3 < z < 0.4 and the mean rate across
0.1 < z < 0.2. Each point corresponds to a single posterior draw from Fig. 6. All estimates cluster around the diagonal, indicating that
the merger rates in both intervals are consistent with one another. The data are therefore consistent with a nonevolving merger rate below
z≲ 0.4. Right panel: analogous comparison between the mean merger rate in the interval 0.7 < z < 0.8 and the mean rate within
0.1 < z < 0.2. The merger rate in the high-redshift interval is greater than that in the low-redshift interval for 96% of samples, indicating
a preference for a merger rate that grows at large redshifts.
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cosmic star formation rate with a distribution of time delays
between progenitor formation and binary merger; the time
delay distribution is itself typically modeled as a power law.
The resulting merger rate is also usually well described
by a power law at low redshifts. If the observed binary
black hole population is dominated by a single formation
channel, the possible non-power-law behavior in Fig. 6
could indicate additional nontrivial structure in the birth
rate or time delay distribution of binary progenitors.
Alternatively, the observed binary population could com-
prise a mixture of several distinct formation channels. A
shift from a flat to an evolving merger rate at z ≈ 0.5 could
mark a transition between two formation channels, one of
which dominates low-redshift mergers and the other of
which takes over at larger redshifts. If a mixture between
formation channels is the correct explanation of Fig. 6,
then we should also expect to see systematic evolution in
other intrinsic properties of binary black holes between
low and high redshifts. Although no such evolution has
been found in the binary black hole mass spectrum
[48,52], the binary black hole spin distribution potentially
evolves with redshift, with the effective inspiral spin
(further discussed in Sec. VI below) becoming larger
and more positive at higher z [54]. Additional observa-
tions will be critical in confirming the trends identified
in Fig. 6 and in Ref. [54] and in probing any relationship
between these two trends.

C. Suitable parametric models

When a parametric model is required, our autoregressive
results suggest that one might replace the standard power-
law model with a broken power law:

dR
d lnm1dq

ðzÞ ¼
8<
:

Rb

�
1þz
1þzb

�
κ1 ðz ≤ zbÞ

Rb

�
1þz
1þzb

�
κ2 ðz > zbÞ;

ð21Þ

with a transition between power-law indices κ1 and κ2
occurring at z ¼ zb, or a sigmoid,

dR
d lnm1dq

ðzÞ ¼ R0 þ
δR

1þ e−ðz−zbÞ=δz
; ð22Þ

in which the merger rate density increases from R0 to
R0 þ δR across an interval of width δz around a transition
redshift zb. A least-squares fit to our median lnR using
Eq. (21) gives

κ1 ¼ 0.3;

κ2 ¼ 3.4;

zb ¼ 0.44;

Rb ¼ 20.4 Gpc−3 yr−1: ð23Þ

A fit using Eq. (22), in turn, gives

zb ¼ 0.65;

δz ¼ 0.08;

R0 ¼ 19.1 Gpc−3 yr−1;

δR ¼ 27.0 Gpc−3 yr−1; ð24Þ

this fit is shown as a dotted curve in Fig. 6. As our
autoregressive results begin to revert to the prior above
z ¼ 1, these fits are performed only in the restricted
range z ≤ 0.8.
Recall that the above fits describe the merger rate per

lnm1 per unit q evaluated at m1 ¼ 20M⊙ and q ¼ 1, rather
than the fully integrated merger rate. If the full binary black
hole merger rate, integrated over all masses, is desired, it
can be fit with the same functional forms:

RðzÞ ¼
(
Rb

�
1þz
1þzb

�
κ1 ðz ≤ zbÞ

Rb

�
1þz
1þzb

�
κ2 ðz > zbÞ;

ð25Þ

or

RðzÞ ¼ R0 þ
δR

1þ e−ðz−zbÞ=δz
; ð26Þ

with parameters

κ1 ¼ 0.2;

κ2 ¼ 3.5;

zb ¼ 0.44;

Rb ¼ 26.4 Gpc−3 yr−1 ð27Þ

in Eq. (25) or

zb ¼ 0.64;

δz ¼ 0.08;

R0 ¼ 25.0 Gpc−3 yr−1;

δR ¼ 33.9 Gpc−3 yr−1 ð28Þ

in Eq. (26).

V. STOP THREE: COMPONENT SPINS

Next, we turn to the distribution of spins among binary
black hole systems. A black hole binary is characterized by 6
spin degrees of freedom, 3 per component spin. Assuming
that component spins have no preferential azimuthal ori-
entations (although see Ref. [55]), we work in a reduced
four-dimensional space and fit for the distributions of
component spin magnitudes χ1 and χ2 and (cosine of the)
spin-orbit tilt angles cos θ1 and cos θ2. We assume that the
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variation of the merger rate across spin magnitudes and
tilts is described via two autoregressive processes, ΨðχÞ
and Φðcos θÞ, with the two component spins in a given
binary distributed independently and identically. As we
measure ΨðχÞ and Φðcos θÞ, we simultaneously infer the
mass and redshift distributions of the binary black hole
population by falling back on ordinary strongly para-
metrized models, assuming a primary mass and mass ratio
distributions fðm1Þ and pðqÞ as described in Appendix D
and a merger rate density that grows as ð1þ zÞκ.
Together, our full merger rate model is of the form

Rðlnm1;q;χ1;χ2;cosθ1;cosθ2;zÞ

¼ r
fðm1ÞpðqÞ
fð20M⊙Þ

�
1þz
1þ0.2

�
κ

½eΨðχ1ÞeΨðχ2ÞeΦðcosθ1ÞeΦðcosθ2Þ�:

ð29Þ

A. Features in the black hole spin distribution

Figure 8 shows our autoregressive measurements of the
black hole spin magnitude and tilt distributions. We plot our
results in two ways. First, the upper row shows merger rates
as a function of spin magnitude and orientation. The upper
left panel shows the merger rate of binaries along the
χ1 ¼ χ2 ¼ χ diagonal at fixed reference mass, mass ratio,
redshift, and spin tilts (m1 ¼ 20M⊙, q ¼ 1, z ¼ 0.2, and
cos θ1 ¼ cos θ2 ¼ 1); using Eq. (29), this is given by

Rðχ1; χ2 ¼ χÞ ¼ rðeΨðχÞÞ2ðeΦð1ÞÞ2: ð30Þ

Similarly, the upper-right panel shows the merger rate
along the cos θ1 ¼ cos θ2 ¼ cos θ diagonal at fixed spin
magnitudes (χ1 ¼ χ2 ¼ 0.1) and the same reference masses
and redshift:

Rðcos θ1; cos θ2 ¼ cos θÞ ¼ rðeΨð0.1ÞÞ2ðeΦðcos θÞÞ2: ð31Þ

We choose to plot results along the χ1 ¼ χ2 and cos θ1 ¼
cos θ2 diagonals to mitigate systematic modeling uncer-
tainties, in much the same way that we plot merger rates
conditioned on specific values of other parameters rather
than marginalizing over them. The rate of black hole
mergers as a function of χ1 only (marginalized over χ2),
for instance, is strongly affected by assumptions regarding
spin pairing, which tend to differ widely across the
literature. For better comparison with other work, however,
we also show in the lower row the implied probability
distributions on individual component spin magnitudes and
tilts. Since we assume that component spins are independ-
ently and identically distributed, the spin magnitude and tilt
probability distributions are given by

pðχÞ ¼ eΨðχÞR
1
0 eΨðχ0Þdχ0

ð32Þ

and

pðcos θÞ ¼ eΦðcos θÞR
1
−1 e

Φðcos θ0Þd cos θ0
: ð33Þ

Note that Eqs. (30) and (31) are proportional to the squares
of Eqs. (32) and (33), respectively.
From Fig. 8, we can make the following parameter-free

statements regarding the binary black hole spin distribution:
(1) The binary black hole merger rate is maximized at

low spin magnitudes. As in Sec. III, we can evaluate
the robustness of this statement by comparing mean
merger rates in different intervals. We find, for
example, that our inferred rate of mergers with
0 ≤ χ ≤ 0.2 is greater than the rate of mergers across
0.6 ≤ χ ≤ 0.8 for each of our 4500 posterior samples
on RðχÞ. In Fig. 9, we additionally show the
ensemble of cumulative distribution functions cor-
responding to our posterior on pðχÞ from Fig. 8. We
find the 50th percentile to occur at χ50% ¼ 0.21þ0.07

−0.07 ,
such that half of black holes have spin magnitudes
below χ ≲ 0.2. The pðχÞ distribution shown in Fig. 8
furthermore suggests that the spin magnitude dis-
tribution may actually peak near χ ≈ 0.2; the recov-
ered mean (shown in black) increases slightly in this
region, and the upper bound on pðχÞ is elevated in
the range 0.2≲ χ ≲ 0.25. Neither of these features is
statistically significant though; only 66% of traces
give larger integrated probability in the 0.15≲ χ ≲
0.35 interval than in the 0≲ χ ≲ 0.15 interval. Thus,
the spin magnitude distribution is consistent with a
peak global maximum at χ ≈ 0.

(2) No special features required at χ ¼ 0 or χ ¼ 1.
Although binary black holes exhibit a preference
for small spins, the data do not require sharp or
discontinuous excesses of nonspinning or maxi-
mally spinning black holes. The possible existence
of these features has been the subject of much
scrutiny. Initial work found that gravitational-wave
data were consistent with two distinct subpopula-
tions: a “spike” comprising the majority of the
binary population and a secondary broad subpopu-
lation centered at χ ≈ 0.5 and possibly extending to
large spins [56]. Later work further asserted that
such features were in fact required by the data
[57,58]. In addition, both Refs. [56,57] suggested
that the failure by other analyses to properly model a
zero-spin subpopulation led to spurious identifica-
tion of spin-orbit misalignment among the black
hole population (to be discussed further below).
Follow-up investigations, however, have since con-
cluded that the data remain agnostic about zero-spin
or rapidly spinning subpopulations [6,15,16,60].
In our Fig. 8, we see no indication of an

excess of nonspinning systems, nor do we see
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any feature suggesting a subpopulation of rapidly
spinning black holes. There may exist a small
number of rapidly spinning black holes; as illus-
trated in Fig. 9, we infer the 95th percentile of
the spin magnitude distribution to occur at
χ95% ¼ 0.72þ0.17

−0.25 . We emphasize, however, that
there is no observational evidence that these
systems comprise a physically distinct subpopu-
lation and not simply an extended tail of a single,
predominantly low-spin population. Consistent
results have also been found when alternatively
using splines to flexibly model the black hole spin
distribution [20,21].

Although an excess of zero-spin systems is not
ruled out, the current lack of discernible features at
χ ¼ 0 or χ ¼ 1 is in possible tension with common
assumptions in the population synthesis of compact
binaries [61–63]: that efficient angular-momentum
transport yields isolated black holes born with very
small (e.g., χ ≲ 0.1) [64,65] or vanishing (χ ≲ 0.01)
natal spin magnitudes [66]. Very small natal spin
magnitudes should yield a sharp excess of low- or
nonspinning systems in the binary black hole spin
distribution. Meanwhile, if some fraction of mergers
arise from isolated stellar binaries, then late-time
tidal spin-up of the second-born black hole’s

FIG. 8. Top panels: merger rate of binary black holes as a function of component spin magnitudes (left) and spin-orbit misalignment
angles (right), as inferred using our autoregressive model defined in Eq. (29). In the axes labels, we use the shorthand dχ⃗1 ≡ dχ1d cos θ1
to indicate a density over both spin magnitude and cosine tilt. Specifically, the rates shown are that of binaries with equal component spin
magnitudes [χ1 ¼ χ2 ¼ χ; see Eq. (30)] or tilts [cos θ1 ¼ cos θ2 ¼ cos θ; Eq. (31)], each evaluated at fixed reference masses and redshift
(m1 ¼ 20M⊙, q ¼ 1, and z ¼ 0.2). The bottom panels show the corresponding probability distributions on component spin magnitudes
and tilts among black hole binaries. Within each panel, the central black curve marks the mean inferred rate or probability, while outer
black curves bound 90% credible intervals. We see that spin magnitudes are well described by a unimodal distribution that peaks at
low values, with no sign of an excess of nonspinning (χ ¼ 0) or near-maximally spinning black holes. Meanwhile, the rate of binary
mergers is nonzero across the full range of misalignment angles, with a spin-tilt distribution that is possibly (but not necessarily)
isotropic. While there also appears to be a possible excess of black holes with cos θ ≈ 0.4, this feature is not statistically significant.

THOMAS A. CALLISTER and WILL M. FARR PHYS. REV. X 14, 021005 (2024)

021005-14



progenitor can override otherwise efficient angular
momentum loss, yielding a secondary subpopulation
of black holes with spins up to χ ≈ 1 [61,62,67,68].
The absence of such features in current data may
suggest that angular momentum transport is less
efficient than usually expected.

(3) The merger rate is nonzero at χ ¼ 0. Despite the fact
that there is no excess of systems with vanishing
spin, the binary black hole merger rate is confidently
nonzero at χ ¼ 0. This finding is in conflict with
commonly used parametric models that assume
component spins follow nonsingular Beta distribu-
tions [6,9,57,69], which, by definition, require
that pðχÞ ¼ 0 at χ ¼ 0; see Fig. 11 and further

discussion below. [70] The fact that the spin mag-
nitude is nonzero at χ ¼ 0may have implications for
the processes by which black holes acquire their
spins. If black holes acquire their spins via stochastic
or incoherent isotropic processes (e.g., random
bombardment by gravity waves soon before core
collapse [71,72] or statistically isotropic fallback
accretion), then the spin magnitude distribution
should have a Maxwellian-like form pðχÞ ∝ χ2 near
χ ¼ 0. The fact that this is not seen suggests, instead,
that black hole spins originate from longer-lived or
directionally coherent processes [73,74].

(4) Black holes exhibit a broad range of spin-orbit
misalignment angles.As illustrated in the upper- and
lower-right panels of Fig. 8, we infer a nonzero
merger rate across the full range of cos θ. Using our
autoregressive constraints on Rðcos θÞ, we estimate
that 41þ9

−17% of black hole spins are misaligned by
more than 90° with respect to binaries’ orbital
angular momenta and that the rate of mergers
with at least one component spin tilted by
θ > 90° is 17.0þ10.7

−7.4 Gpc−3 yr−1. Past studies using
both strongly parametrized models [6,9,15,75] and
flexible splines [20,21] have also concluded that
the binary black hole population exhibits significant
spin-orbit misalignment. The results presented
here, obtained under our highly agnostic and
parameter-free autoregressive model, corroborate
these conclusions.

(5) A perfectly isotropic distribution is moderately
disfavored. As seen in Fig. 8, both the merger rate
Rðcos θÞ and the probability distribution pðcos θÞ
have a tendency to increase towards positive cos θ.
In Fig. 9, we show the corresponding cumulative
distribution of cos θ and the inferred median cos θ
among the black hole population. We find this
median to be cosθ50%¼0.16þ0.28

−0.17 , with cosθ50%>0

for 88% of our posterior samples (the mean value of
cos θ is also positive at comparable credibility).
These results somewhat disfavor a purely isotropic
component spin distribution, although isotropy can-
not yet be ruled out.

(6) A possible excess of systems with cos θ ≈ 0.4? As
identified in Ref. [75], we also see a possible excess
of black holes with cos θ ≈ 0.4. We find that
although this feature is possible, it is not required
by the data. Following our procedure from Sec. III,
we can evaluate the significance of the cos θ ≈ 0.4
peak by asking what fraction of posterior samples
give a higher mean probability in a window centered
on the peak than in windows at both higher and
lower cos θ values. As shown in Fig. 10, only 37% of
samples are consistent with a peak at cos θ ≈ 0.4.
While the probability distribution of spin tilts is
very likely to increase between cos θ ≈ −0.1 and

FIG. 9. Cumulative distribution functions of binary black hole
spin magnitudes (top panel) and cosine tilt angles (bottom panel),
corresponding to the probability distributions shown in Fig. 11.
For reference, we mark median estimates of the 50th and 95th
percentiles in the spin magnitude distribution, occurring at
χ50% ¼ 0.21þ0.07

−0.07 and χ95% ¼ 0.72þ0.17
−0.25 , respectively. We also

indicate the measured 50th percentile of the cos θ distribution,
occurring at cos θ50% ¼ 0.16þ0.28

−0.17 , with cos θ50% > 0 at 88%
credibility.
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cos θ ≈ 0.4, few samples exhibit the subsequent drop
necessary for a peak.

B. Discussion

Figure 11 compares our flexible autoregressive infer-
ence with results from the strongly parametrized DEFAULT

model [69] presented in Ref. [6]. In this model, compo-
nent spin magnitudes are independently and identically
drawn from a Beta distribution, while spin tilts are drawn
from a mixture between isotropic and preferentially
aligned subpopulations. The two approaches generally
yield similar conclusions, with some notable exceptions.
First, as noted above, the DEFAULT model is defined such
that pðχÞ is necessarily zero at χ ¼ 0. Our autoregressive
results indicate that this is likely not the case; we infer a
nonzero rate of mergers with χ ¼ 0 (although no excess
of such mergers as one might expect if isolated black
holes have vanishing natal spins). Second, strongly
parametrized approaches typically require the cos θ dis-
tribution to be either isotropic or peaked at cos θ ¼ 1. As
illustrated in, e.g., the bottom right-hand panel of Fig. 11,
the data tell a more complicated story, with a possible
(albeit statistically insignificant) feature at intermediate
cos θ values. See Ref. [75] for further investigations of
this feature.
Finally, it is instructive to compare the behavior of

Rðcos θÞ, in the top-right panel of Fig. 11, with that of
pðcos θÞ, in the bottom-right panel. Studies of the black
hole spin distribution sometimes include the following

seemingly inconsistent statements: (i) that an isotropic
cos θ distribution is disfavored but cannot be ruled out
and (ii) that our knowledge of pðcos θÞ is accurately
reflected in the red band in the lower-right panel of
Fig. 11. Figure 11, though, seems to show, unambiguously,
that pðcos θÞ is an increasing function of cos θ, in conflict
with the first of the two statements above.
The resolution to this apparent paradox involves the fact

that we directly measure Rðcos θÞ, not the normalized
probability distribution pðcos θÞ. Although spin isotropy is
disfavored, it is evident in Fig. 11 that a flat Rðcos θÞ
cannot yet be fully ruled out. The renormalized probability
density pðcos θÞ can inadvertently obscure this fact:
Although there may exist many distinct posterior samples
that yield isotropic Rðcos θÞ (e.g., flat traces at different
vertical positions within the red or blue bands), each of
these possibilities is mapped to the same function,
pðcos θÞ ¼ 1=2, upon normalization. Thus, hidden behind
the “uncertainty bands” in the lower-right panel of Fig. 11
is a very uneven density of possibilities, with a high number
of individual draws stacked directly on pðcos θÞ ¼ 1=2.
Because the uncertainty bounds do not communicate this
density, the result is a figure that appears to indicate an
unambiguous measurement of anisotropy. In order to avoid
this counterintuitive behavior, we recommend that mea-
surements of the cos θ distribution be shown as constraints
on both the probability density pðcos θÞ and the merger
rate Rðcos θÞ.
While our autoregressive model makes minimal physical

assumptions, there remain two caveats to consider when
interpreting the above results. First, we have chosen to
model component spins as independently and identically
distributed. This assumption is broken in situations like
tidal spin-up of field binaries. We note that our assumption
of independence and identicality is purely a choice of
model and not a limitation of the method; one could
consider, instead, adopting separate autoregressive proc-
esses for the distributions of primary and secondary spin
magnitudes and tilts.
Second, our autoregressive model necessarily imposes a

degree of continuity in the merger rate as a function of χ
and cos θ. This continuity could, in principle, obscure
very sharp or discontinuous features in the black hole
spin distributions. It is therefore reasonable to ask if our
conclusions above are being driven by continuity condi-
tions rather than informative data. This question is par-
ticularly critical when interpreting our conclusions
regarding the lack of sharp features near χ ≈ 0; is our
nondetection of such features significant, or do they fall
outside the coverage of our model? In Appendix C, we
conduct a mock data challenge to test the ability of our
autoregressive model to recover a sharp excess of non-
spinning black holes. Although the resolution of our results
is, at times, limited by the processes’ finite scale length τ,
we find that we can successfully identify narrow excesses

FIG. 10. Evaluation of the significance of the cos θ ≈ 0.4 peak
in Fig. 8. For each probability distribution pðcos θÞ in Fig. 8, we
show the ratios between the mean probability in the window
0.05 < cos θ < 0.75 (centered on the possible peak) and the
mean probabilities across adjacent windows at smaller and larger
cos θ. When a peak is present, both ratios should be greater than
1, corresponding to the upper-right quadrant. We find that only
37% of posterior samples fall in this quadrant, indicating that the
cos θ ≈ 0.4 peak is not statistically significant.
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or bimodalities in the merger rate arising from a population
of nonspinning systems, should it exist.
A related question is the degree to which we can trust

extended tails appearing in our autoregressive measure-
ments of the spin-dependent merger rate. As also demon-
strated in Appendix C, our autoregressive process never
goes completely to zero, as this would correspond to
lnR → −∞. Consequently, are the tails in Fig. 8 towards
large χ and negative cos θ physically meaningful, or do they
arise from our prior modeling assumptions? Within
Appendix C, we find that, in the absence of observations,
the recovered merger rates asymptotically approach a value
corresponding to Nexp ≲ 1 total expected detections (inte-
grated across the region of interest). We can leverage this
behavior to gauge the extent to which tails in our χ and

cos θ distributions are prior or likelihood dominated.
Specifically, we use our posteriors on RðχiÞ and Rðcos θiÞ
to compute expected detection rates at large χ and small
cos θ and identify the threshold spin magnitude and tilts
beyond which we expect fewer than N ¼ 2 component
spins to arise in our sample; these values mark the
boundaries beyond which our results are likely prior
dominated. This calculation is described in more detail in
Appendix E, and it also accounts for the influence of
selection effects on the observed distribution of binary
parameters.
Our measurements of the spin magnitude distribution

imply that we expect N ≤ 2 detections with at least one
component spin magnitude falling above χ ≥ 0.90þ0.08

−0.26 ,
where the uncertainties reflect our uncertain recovery of the

FIG. 11. Comparison of the binary black hole spin distributions inferred using our autoregressive model (blue) and that recovered by a
strongly parametrized approach (red, the DEFAULT model of Ref. [6]). As in Fig. 8, the top row shows the binary merger rate as a function
of component spin magnitude and spin-orbit tilt angle, at fixed m1, q, and z, while the lower row shows the corresponding probability
distributions. Component spins are assumed to be independently and identically distributed. Overall, there is good reasonable qualitative
agreement between both sets of results; each recovers similar merger rates across the range of cos θ values and for 0.1 ≲ χ ≲ 0.3. At the
same time, the autoregressive results indicate that the merger rate remains finite for both smaller and larger spin magnitudes, whereas the
parametric model requires a priori that it vanishes as χ → 0 and χ → 1.
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spin magnitude distribution. Thus, our recovered spin
magnitude distribution is likely prior dominated at
χ ≳ 0.9, although prior effects may also become important
above χ ≳ 0.65 under a more conservative interpretation.
Meanwhile, we find that our results, on average, predict
fewer than two detections with cos θ ≤ −0.96þ0.12

−0.03 , imply-
ing that our posterior on the spin-tilt distribution is like-
lihood dominated across nearly the full range of cos θ
values. One might choose more conservative thresholds by
instead identifying values beyond which fewer than N ¼ 4

detections are predicted; these occur at χ ≥ 0.82þ0.13
−0.29

and cos θ ≤ −0.91þ0.19
−0.06 .

C. Suitable parametric models

When a standard strongly parametrized model is
required, we find that our autoregressive measurement of
pðχÞ is well fit by a truncated Gaussian or a truncated
Lorentzian,

pðχÞ ¼ C
γ

	
1þ

�
χ − χ0

γ

�
2


−1
; ð34Þ

with normalization

C ¼
	
tan−1

�
1 − χ0

γ

�
þ tan−1

�
χ0
γ

�

−1
; ð35Þ

and pðcos θÞ by a mixture between isotropic and Gaussian
components,

pðcos θÞ ¼ fiso
2

þ ð1 − fisoÞN½−1;1�ðcos θjμ; σÞ; ð36Þ

where N½−1;1�ðcos θjμ; σÞ indicates a truncated Gaussian
normalized on the interval −1 ≤ cos θ ≤ 1. Equation (36) is
the same as the DEFAULT spin-tilt distribution [69] but with
a freely varying mean as advocated in Ref. [75]. A least-
squares fit of our results to Eqs. (34) and (36) yields best-fit
parameters

χ0 ¼ 0.15;

γ ¼ 0.18;

fiso ¼ 0.67;

μ ¼ 0.59;

σ ¼ 0.58: ð37Þ

These fits describe marginal probability distributions and
are therefore valid at any choice of m1, q, and z.

VI. STOP FOUR: EFFECTIVE SPINS

Although component spin magnitudes and spin-orbit
misalignment angles have a clear physical interpretation,

they are particularly difficult to measure using gravitational
waves. Easier to directly measure are various effective
spins: derived parameters that, while less physically inter-
pretable, more directly govern a gravitational wave’s
morphology. These effective parameters include the effec-
tive inspiral spin [76,77],

χeff ¼
χ1 cos θ1 þ qχ2 cos θ2

1þ q
; ð38Þ

and the effective precessing spin [78],

χp ¼ Max
�
χ1 sin θ1;

3þ 4q
4þ 3q

qχ2 sin θ2

�
: ð39Þ

Here, χeff quantifies the degree of spin projected parallel
to a binary’s orbital angular momentum, while χp
approximately quantifies the degree of in-plane spin
(and hence more directly controls the degree of spin-
orbit precession). Although χeff and χp are less manifestly
physical than the component spin magnitudes and tilts
(much like the relationship between a binary’s chirp mass
and component masses), they act as signposts by which to
identify categorical features of the compact binary spin
distribution. Negative χeff , for example, can arise only if
one or both component spins are inclined by more than
90° with respect to their orbit. Nonzero χp, meanwhile,
can manifest only if a system has at least some in-plane
spin, such that sin θ > 0.
Just as we have applied our autoregressive model to

nonparametrically infer the component spin magnitude and
tilt distributions, we can use our autoregressive model to
measure the distribution of these spin parameters. IfΨðχeffÞ
and ΦðχpÞ are autoregressive functions of χeff and χp,
respectively, then our merger rate model will be of the form

Rðlnm1; q; χeff ; χp; zÞ

¼ r
fðm1ÞpðqÞ
fð20M⊙Þ

�
1þ z
1þ 0.2

�
κ

½eΨðχeffÞeΦðχpÞ�; ð40Þ

where we again fall back on parametric models for the
dependence of the merger rate on binary masses and
redshift. Note that, while we are describing a binary’s spin
configuration in terms of χeff and χp, binary spin is
fundamentally six dimensional. Our choice to work in a
reduced two-dimensional space requires that we assume
some distribution for the remaining 4 degrees of freedom,
even if that assumption is implicit. In defining Eq. (40),
we indirectly assume that the remaining spin degrees of
freedom follow their default parameter estimation priors
(uniform spin magnitudes and isotropic directions), con-
ditioned on χeff and χp.
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A. Features in the black hole effective spin distribution

Figure 12 shows our inference of the χeff and χp
distributions of binary black holes. As in Fig. 8, the upper
row shows the inferred merger rate as a function of χeff
(with fixed χp; left) and χp (with fixed χeff ; right). Both rates
are evaluated at a fixed reference primary mass, mass ratio,
and redshift. The bottom row, meanwhile, shows the
corresponding normalized probability distributions of each
effective spin parameter. From Fig. 12, we draw the
following conclusions:
(1) The merger rate is nonzero for χeff < 0. Consistent

with the results of Sec. V, we find a nonzero merger
rate for binaries with χeff < 0, suggesting the pres-
ence of component spins misaligned by more than
90° with respect to their orbital angular momenta.

We find that 27þ17
−14% of binary black holes have

negative χeff and that the integrated merger rate
of binaries with negative effective spin is
7.7þ8.2

−4.3 Gpc−3 yr−1. These estimates are comparable
to those presented in Ref. [6], which concluded,
using a strongly parametrized model, that 29þ15

−13% of
binaries exhibit negative χeff .

(2) The χeff distribution peaks at positive values. De-
spite the presence of binaries with negative effective
spin, we find that the χeff distribution is not
symmetric about χeff ¼ 0 but instead prefers to peak
at small but positive values. This preference is
significant; among our posterior samples onRðχeffÞ,
98.3% have a larger integrated merger rate in the
range 0≤ χeff ≤0.1 than between −0.1≤ χeff ≤0.

FIG. 12. Top panels: merger rate of binary black holes as a function of effective inspiral spin (χeff , left) and effective precessing spin
(χp, right), as inferred using our autoregressive model. The rates shown are each evaluated at fixed reference masses and redshift
(m1 ¼ 20M⊙, q ¼ 1, and z ¼ 0.2). The bottom panels show the corresponding probability distributions on each effective spin
parameter. Within each panel, the central black curve marks the mean inferred rate or probability densities, while outer black curves
bound 90% credible intervals. Effective inspiral spins exhibit a unimodal distribution. The center of this distribution prefers to be at
positive χeff but with a nonzero merger rate at χeff < 0. The χp distribution, meanwhile, preferentially peaks toward χp ¼ 0 but with a
shoulder that extends to moderate to large precessing spins.
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Similarly, the median χeff is inferred to be positive
for 98.2% of samples [79].

(3) The binary black hole distribution exhibits nonzero
χp. Consistent with the measurement of a range of
cos θ values, we find that the black hole merger rate
extends across a wide range of χp. The percentage of
binaries with χp > 0.2, for example, is 42þ35

−32%.

B. Discussion

We compare our autoregressive measurements to pre-
vious strongly parametrized population measurements in
Fig. 13. Blue bands show central 90% credible intervals
on the rates and probability distributions of χeff and χp
under our autoregressive model, while red bands show
results obtained when modeling the χeff − χp as a bivariate
Gaussian in order to measure the mean and standard
deviation of each quantity. Our autoregressive RðχeffÞ

measurement is, in fact, in reasonable agreement with a
Gaussian model, although with extended tails to χeff ≳ 0.4
and χeff ≲ −0.4. Both the autoregressive and Gaussian χp
models, in turn, yield similar merger rates at χp ≈ 0.1,
although the Gaussian model appears to vanish too quickly
as χp → 0 or 1.
As in the component spin case above, it is valuable to

explore whether these extended tails in our χeff and χp
distribution are due to informative data or to the continuity
imposed by our autoregressive model. We will once again
estimate the regions in which our results are prior domi-
nated by identifying the threshold χeff and χp values beyond
which our posteriors predict fewer than N ¼ 2 detections.
We find that fewer than two detections are expected at
χeff ≤ −0.29þ0.22

−0.45 , at χeff ≥ 0.49þ0.31
−0.29 , and at χp ≥ 0.84þ0.14

−0.44 .
This suggests that our results are prior dominated beyond
these regions, such that the apparent tension between the

FIG. 13. Comparison of the binary black hole effective spin distributions inferred using our autoregressive model (blue) and that
recovered by a strongly parametrized approach (red, the GAUSSIAN spin model of [6]). As in Fig. 12, the top row shows the binary merger
rate as a function of effective spin parameters, χeff and χp (at fixed m1, q, and z), while the lower row shows the corresponding
probability distributions. The merger rates recovered by each approach agree well in the −0.1≲ χeff ≲ 0.2 and 0.1≲ χp ≲ 0.3 ranges,
beyond which the GAUSSIAN rates fall to zero much more quickly than our autoregressive inference.
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GAUSSIAN and autoregressive models at very positive and
negative χeff and very large χp is consistent with differing
prior assumptions. Furthermore, the fact that we expect
N ¼ 2 detections with effective spins χeff ≲ −0.3 suggests
that the inferred presence of negative χeff systems is due to
informative data, rather than a consequence of prior con-
tinuity conditions imposed on our model. However, based on
the uncertainties quoted above, we cannot rule out an
empirical distribution function that instead only reaches
N ¼ 2 detections above χeff ¼ −0.09, such that prior effects
set in at χeff ≈ −0.1. In this more conservative approach, is it
possible that continuity conditions are “fooling” our model
into inferring the presence of negative effective spins where
none in fact exist?
If all binary black holes had spin-orbit misalignment

angles below θ ¼ 90° degrees (and hence purely positive
effective spins), this could manifest as a sharp truncation in
the effective spin distribution at χeff ¼ 0. In this case, our
autoregressive model would indeed struggle to fit such a
discontinuity, possibly leading us to incorrectly conclude
the existence of systems with negative effective spins.
There is, however, a simple remedy to this problem. We
should simply move to coordinates in which there are no
such discontinuities: component spin magnitudes and tilts.
In Sec. V above, autoregressive modeling of the spin-tilt
distribution implies that a significant fraction of black holes
have misalignment angles greater than 90°, consistent with
the need for negative χeff identified in this section.

Figure 14 compares our autoregressive measurements of
the effective spin distributions in this section (blue) with the
effective spin distributions implied by our component spin
measurements in Sec. V (white). In order to compute these
implied distributions, we again assume that component
spins are independently and identically distributed. The
white and blue distributions are not identical. This is
expected; each measurement corresponds to fundamentally
distinct models, and further structure is necessarily
imposed by the coordinate transformation from component
to effective spins [80]. At the same time, we see the same
qualitative features in both sets of results: a χeff distribution
extending to negative values and a broad χp distribution.
That these features emerge whether we choose to describe
the black hole population via its component spins or
effective spins suggests that these conclusions are robust
and not due to modeling systematics.

C. Suitable parametric models

When a strongly parametrized model is needed for
pðχeffÞ, we find our autoregressive result to be well
approximated by a truncated Gaussian with mean and
standard deviation

μ ¼ 0.07;

σ ¼ 0.09; ð41Þ

FIG. 14. Comparison between the effective spin distributions obtained through direct autoregressive fits [blue; Eq. (40) in Sec. VI]
and the effective spin distributions obtained by instead fitting autoregressive models to the underlying component spin magnitudes
and tilts [white; Eq. (29) in Sec. V]. There is not perfect agreement between results. Compared to the direct autoregressive
measurement of pðχeffÞ and pðχpÞ, fits to the underlying component spins give an effective inspiral spin distribution that is likely
maximized closer to χeff ≈ 0 with a broader tail to positive χeff , and pðχpÞ is meanwhile maximized at larger values of χp. These
differences are expected; each model makes different physical assumptions, and the coordinate transformation from component to
effective spins imprints further structure in the derived effective spin distributions [such as the requirement that pðχpÞ ¼ 0 at
χp ¼ 0]. At the same time, both sets of results share qualitative features in common, such as the presence of events with negative
effective spins. That both results exhibit this feature suggests that it is robust, rather than a spurious result arising from continuity
conditions imposed on our autoregressive measurement of pðχeffÞ.
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or a truncated Lorentzian [see Eq. (34)] with

χ0 ¼ 0.07;

γ ¼ 0.07; ð42Þ

this latter fit is shown as a dotted line in the lower-right
panel of Fig. 13. Similarly, pðχpÞ can be approximated by
either a truncated Gaussian or Lorentzian, with best-fit
parameters

μ ¼ 0.0;

σ ¼ 0.23; ð43Þ

and

χ0 ¼ 0.0;

γ ¼ 0.18; ð44Þ

respectively, the latter of which is shown in Fig. 13.
As in previous sections, these fits are valid at any choice
of m1, q, or z.

VII. CONCLUSION

In this paper, we have developed and demonstrated a
novel means of measuring the population properties of
merging binary black holes. By describing the black hole
merger rate as a stochastic process, we hierarchically
inferred the black hole mass, redshift, and spin distributions
without resorting to strongly parametrized models that
a priori assume some particular structure. The advantage
of highly flexible models like autoregressive processes is
twofold. They allow us to agnostically study the “known
unknowns,” like theoretically predicted features in the black
hole population, but also reveal the “unknown unknowns,”
unexpected and impactful features that may otherwise be
missed by standard strongly parametrized approaches.
We accordingly searched for expected and unexpected

features alike in the distributions of binary black hole
masses, redshifts, and spins. Our results reiterated known
features in the black hole mass spectrum (peaks at
approximately 10 and 35M⊙) but also revealed a more
nuanced structure like an additional steepening of Rðm1Þ
towards high masses. We found signs of unexpected
structure in the redshift distribution of binary black holes,
recovering a merger rate that prefers to remain flat at
low redshifts followed by steeper growth at z≳ 0.5. In
addition, our autoregressive results offered a direct and
model agnostic look at the black hole spin distribution,
revealing features like severe spin-orbit misalignment and
a unimodal spin magnitude distribution that have pre-
viously been controversial.
A challenge that arises when using flexible models is

how exactly to translate results [e.g., our posterior on

Rðm1Þ] into statements about physical features and their
significance. We find it useful to conceptually distinguish
between two steps: (i) data fitting and (ii) feature extraction.
When performing hierarchical inference with strongly
parametrized models, these two steps are accomplished
simultaneously. A clear example is the POWER LAW+PEAK

model for Rðm1Þ, whose parameters directly encode the
location, width, and height of a possible Gaussian peak.
Fitting the POWER LAW+PEAK model to data, therefore,
automatically extracts information about the feature of
interest. When using highly flexible models, on the other
hand, data fitting and feature extraction are necessarily
distinct. Although hierarchically fitting our autoregressive
model yields, for instance, the mass spectrum shown in
Fig. 3, this result offers no immediate information about the
presence and/or significance of possible features. Instead,
we need to visually inspect our results and devise further
tests or summary statistics to make any quantitative state-
ments about the features we see. A major focus of our work
has accordingly been the use of parameter-free summary
statistics, like the ratios of merger rates in adjacent bins, to
identify and characterize the features summarized above.
These parameter-free techniques for feature extraction can be
employed for any model and additionally offer a means of
directly comparing results obtained under two or more
different models (strongly parametrized or not).
While highly flexible models like ours enable a very

agnostic exploration of the compact binary population, we
do not necessarily advocate for replacing standard strongly
parametrized models. Instead, we envision using both
strongly parametrized and flexible models in a cyclic
development process: flexible models enable the identi-
fication of possible new features, which are followed up
and characterized using targeted strongly parametrized
models, whose validity is finally rechecked with flexible
models as new data become available. In the spirit of this
cyclic development, in each section above we have offered
refined strongly parametrized models that capture the range
of features identified in our autoregressive results.
One limitation of the autoregressive model employed

here is the fact that it is fundamentally one dimensional.
Although we can simultaneously measure the dependence
of the merger rate on different binary parameters, each with
its own autoregressive process, this approach cannot
capture any intrinsic correlations among parameters. As
strongly parametrized models begin to identify possible
correlations between binary parameters [17,54], flexible
population models that can operate in higher dimensions
will be critical in following up on these results and
agnostically identifying new correlations. Some alternative
approaches, like spline-based [19,20] or binned [22,23]
models, can be very easily extended to more than n ¼ 1
dimension but likely become computationally infeasible
when n becomes large. Future work will involve the
exploration of multidimensional stochastic processes as
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tools with which to measure the merger rate across the
complete higher-dimensional space of binary black hole
parameters.

The code used for this study is hosted on GitHub at [81],
and data produced by our analyses can be downloaded from
Zenodo at [82].
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APPENDIX A: MORE ON AUTOREGRESSIVE
MODELS

As discussed in the main body, in this work, we
agnostically model the rate density of compact binaries
as an autoregressive process. Given a merger rate lnRi at
some mass lnmi, Eq. (6) offers a prescription with which to
randomly propose a merger rate lnRiþ1 at the next mass
lnmiþ1 of interest. We still need to initialize this process,
though, picking some initial rate lnR1 at the smallest mass
lnm1 considered in our sample. This initial value is
randomly drawn via

lnR1 ∼ Nðln r; σÞ: ðA1Þ

The exact form of Eq. (6) and the definitions of ci and wi
[Eqs. (7) and (8), respectively] are chosen to guarantee that
all subsequent rates lnRi have the same marginal prior as
lnR1, such that the autoregressive process is stationary. For
example, from Eq. (6), the prior expectation value of lnRi
is given by

hlnRii ¼ ln rþ ci½hlnRi−1i − ln r�; ðA2Þ

where we have used the fact that hwii ¼ 0. From above,
though, we know that our initial point satisfies
hlnR1i ¼ ln r, implying

hlnRii ¼ ln r ðA3Þ

for all i. Similarly, the variance of lnRi is

VarðlnRiÞ¼c2iVarðlnRi−1ÞþVarðwiÞ
¼e−2Δi=τVarðlnRi−1Þþσ2ð1−e−2Δi=τÞ: ðA4Þ

Consider the i ¼ 2 case. From Eq. (A1), we know that the
variance of lnR1 is σ2, giving

VarðlnR2Þ ¼ e−2Δi=τσ2 þ σ2ð1 − e−2Δi=τÞ
¼ σ2: ðA5Þ

By induction,

VarðlnRiÞ ¼ σ2 ðA6Þ

for all subsequent i. We can finally consider the covariance
between the rates lnRiþn and lnRi at two different
locations:

CovðlnRiþn; lnRiÞ
¼ hlnRiþn lnRii− hlnRiþnihlnRii
¼ h½ln rþ ciþnðlnRiþn−1 − ln rÞ þwiþn� lnRii− ðln rÞ2
¼ ciþnhlnRiþn−1 lnRii− ciþnðln rÞ2
¼ ciþnCovðlnRiþn−1; lnRiÞ: ðA7Þ

To obtain the third line, we used the definition of our
autoregressive process to write lnRiþn in terms of
lnRiþn−1. To move to the fourth line, we then used the
facts that wiþn and lnRi are uncorrelated, that hwiþni ¼ 0,
and that hlnRii ¼ ln r. Continuing to iterate in this
fashion gives

CovðlnRiþn; lnRiÞ

¼
� Yiþn

j¼iþ1

cj

�
CovðlnRi; lnRiÞ

¼ e−ðΔiþnþΔiþn−1þ���þΔiþ1Þ=τVarðlnRiÞ
¼ σ2e−ðlnmiþn−lnmiÞ=τ: ðA8Þ

Thus, τ is indeed the scale over which the autoregressive
process retains significant autocorrelation.
Implementing our hierarchical likelihood model in

numpyro [39,40] and jax [38] necessitates efficient pro-
posals of new autoregressive processes drawn from our
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prior. To make our discussion more concrete, consider the
proposal of an autoregressive process Ψ over (log) black
hole masses lnm. As a preprocessing step, define ⟦ lnm⟧ to
be the sorted union of all of our posterior samples and
injections,

⟦ lnm⟧ ¼ Sortðflnm1g ∪ … ∪ flnmNobs
g ∪ flnminjgÞ;

ðA9Þ

where flnmig is the set of posterior samples associated
with event i and flnminjg is the set of masses correspond-
ing to successfully recovered injections. Define npts to be
the length of ⟦ lnm⟧. In addition, precompute the set of
differences ⟦Δ⟧ between each adjacent pair in ⟦ lnm⟧,

⟦Δ⟧ ¼ Diff⟦ lnm⟧; ðA10Þ

where ⟦Δ⟧ is of length npts − 1. Given priors pðσÞ, pðτÞ,
and pðln rÞ on the standard deviation, length scale, and
mean of the autoregressive process Ψ, realizations of Ψ can
then be proposed as follows.
(1) Draw σ ∼ pðσÞ, τ ∼ pðτÞ, and ln r ∼ pðln rÞ from

their respective priors.
(2) Draw a set ⟦ni⟧

npts
i¼1 ∼ Nð0; 1Þ of values from a unit

normal distribution.
(3) Initialize the autoregressive process by defining

Ψ̃1 ¼ σn1.
(4) Compute sets ⟦wi⟧ ¼ ⟦σð1 − e−2Δi=τÞni⟧ and

⟦ci⟧ ¼ ⟦e−Δi=τ⟧ for i∈ ð2; nptsÞ.
(5) Compute all Ψ̃i>1 via iterating Ψ̃i ¼ ciΨ̃i−1 þ wi.
(6) Finally, apply the mean: ⟦Ψi⟧ ¼ ⟦Ψ̃i þ ln r⟧.

To enable efficient sampling, the ⟦Ψi⟧, ⟦wi⟧, and ⟦ci⟧ are
generated following noncentered approaches; we directly
sample in ⟦Ψ̃i⟧ and ⟦ni⟧ and then transform to the actual
parameters of interest. Once the complete set ⟦Ψi⟧ of log-
merger rates is generated, the sorting performed to obtain
Eq. (A9) can be reversed to repartition ⟦Ψi⟧ back into the
merger rates across individual events’ posterior samples
and found injections.
In some cases, the merger rate lnRðθÞ is not well

measured at the lowest θ in our set of samples but at some
intermediate value. The merger rate as a function of mass,
for example, is much better constrained near m ≈ 25M⊙
than at the very lowest masses m≲ 5M⊙. In this case,
sampling efficiency is maximized by not initializing our
autoregressive process at its leftmost point (as in Step 3
above) but instead initializing the process in the middle of
our parameter range, near the best-measured rate. In this
case, Steps 4–6 above are just repeated twice, once to
generate forward steps to the right of our reference point
and once to generate backward steps to the left of the
reference point.

APPENDIX B: FURTHER INFERENCE DETAILS
AND PRIOR CONSTRAINTS

In this appendix, we give additional information about
the exact data used in this paper and further details
regarding our implementation and inference of the autor-
egressive population model.
In our analyses, we include binary black holes in the

GWTC-3 catalog [1] detected with false alarm rates below
1 yr−1. GWTC-3 contains two events, GW190814 [90] and
GW190917, that are likely binary black holes but are
known to be outliers with respect to the bulk binary
population [6]; we exclude these two events, leaving
69 binary black holes to be included in our analysis. We
use publicly available parameter estimation samples hosted
by the Gravitational-Wave Open Science Center [91–93]
and/or Zenodo. Each binary typically has several distinct
sets of associated posterior samples. For events first
identified in GWTC-1 [94], we use the “Overall_
posterior” samples [95]. For events announced in
GWTC-2 [96], we use the “PrecessingSpinIMRHM” sam-
ples [97], and for new events in GWTC-3 [1], we use the
“C01:Mixed” samples [98]. Each of these sets corresponds
to a union of parameter estimation samples from various
waveform families. All waveforms include the physical
effects of spin precession, although parameter estimation
accounting for higher-order modes is only available for
GWTC-2 and GWTC-3.
Our hierarchical inference relies on the use of injected

signals to characterize search selection effects; see Eq. (12).
We use the injection set discussed in Ref. [6,99] character-
izing injections as “found” if they are recovered with false-
alarm rates below 1 yr−1 in at least one search pipeline.
Note that the subset of injections performed for the O1 and
O2 observing runs does not have associated false-alarm
rates only network signal-to-noise ratios ρ. For these
events, we consider them “found” if ρ ≥ 10.
Ensuring convergence of our inference sometimes

requires careful regularization of σ and τ. In particular,
when performing inference with an autoregressive prior, we
find that a common instability is a runaway towards σ → ∞
and τ → 0. The cause of this behaviour can be seen from
the hierarchical likelihood defined in Eqs. (9) and (12). In
particular, the likelihood is maximized if the merger rates
at each posterior sample can grow to RðλI;jÞ → ∞ while
sending the merger rates at each injection to Rðλinj;iÞ → 0

(in turn, sending Nexp → 0). This situation is sketched in
Fig. 15, in which posterior samples are denoted as filled
circles while injections are marked with stars. Strongly
parametrized models usually impose strict constraints on
the continuity and smoothness of the merger rate, prevent-
ing this behavior. Our autoregressive model and similar
approaches, in contrast, are explicitly designed to allow for
rapid variations in the merger rate, so they are subject to this
instability. In particular, our autoregressive inference is
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most susceptible to runaway oscillatory behavior when the
processes’ variance becomes large and the autocorrelation
length becomes small.
This instability can be regulated by placing suitable

priors on the parameters governing the autoregressive
process. To motivate physically meaningful priors, it is
useful to think about how an autoregressive process is
allowed to vary between two points. Consider an autore-
gressive process ΨðxÞ with zero mean, variance σ2, and
autocorrelation length τ defined across some parameter x.
In addition, let δΨ ¼ Ψ2 −Ψ1 be the difference in the
process’ values between two points x1 and x2 (separated by
δx ¼ x2 − x1). The expectation value of δΨ is

hδΨi ¼ hΨ2i − hΨ1i
¼ 0 ðB1Þ

since, by definition, the process has zero mean. The
expectation value of δΨ2, though, is nonzero:

hδΨ2i ¼ hðΨ2 − Ψ1Þ2i
¼ hΨ2

2i þ hΨ2
1i − 2CovðΨ2;Ψ1Þ

¼ 2σ2 − 2σ2e−δx=τ

¼ 2σ2ð1 − e−δx=τÞ; ðB2Þ

using Eqs. (A6) and (A7) for the variance and covariance of
an autoregressive process. It is helpful to consider Eq. (B2)
in two different limits. In the limit δx ≪ τ,

lim
δx≪τ

hδΨ2i ¼ 2δx
σ2

τ
: ðB3Þ

In the opposite limit,

lim
δx≫τ

hδΨ2i ¼ 2σ2: ðB4Þ

More generally, we can show that in each of the above
limits, δΨ2 is χ2 distributed with k ¼ 1 degrees of freedom.
Recall that Ψ1 and Ψ2 are related by

Ψ2 ¼ e−δx=τΨ1 þ σð1 − e−2δx=τÞ1=2n; ðB5Þ

where n ∼ Nð0; 1Þ is drawn from a unit normal distribution.
Then,

δΨ2 ¼ ½ðe−δx=τ − 1ÞΨ1 þ σð1 − e−2δx=τÞ1=2n�2: ðB6Þ

First, consider the δx ≪ τ limit. Expanding to lowest order
in δx=τ,

δΨ2 ≈

 
−
δx
τ
Ψ1 þ σn

ffiffiffiffiffiffiffi
2δx
τ

r !
2

≈ σ2n2
�
2δx
τ

�
; ðB7Þ

where the first term is subdominant to the second in the
limit of small δx=τ. We therefore have

δΨ2=δx
2σ2=τ

≈ n2 ðB8Þ

such that, by definition, this quantity is chi-squared
distributed with 1 degree of freedom:

δΨ2=δx
2σ2=τ

∼ χ2ð1Þ: ðB9Þ

Its corresponding expectation value is

�
δΨ2=δx
2σ2=τ

�
¼ hδΨ2i=δx

2σ2=τ
¼ 1; ðB10Þ

compare to Eq. (B3) above. In the opposite limit, where
δx ≫ τ, Eq. (B6) becomes

δΨ2 ≈ ð−Ψ1 þ σnÞ2: ðB11Þ

Note that Ψ1 is itself drawn from a normal distribution (see
Appendix A). We can therefore write

δΨ2 ≈ σ2ðn −mÞ2; ðB12Þ

where m ∼ Nð0; 1Þ is another normally distributed
random variable. The difference n −m is itself a

FIG. 15. Illustration of the runaway situation described in
Appendix B. When performing inference with an auto-
regressive process population model, one can encounter a
runaway instability occurring at small scale lengths τ and large
variances σ2. In this regime, the likelihood [Eq. (9)] can be
made arbitrarily large by allowing the merger rate at the
locations of posterior samples (denoted by circles) to approach
lnR → ∞ while sending the merger rate at the locations of
found injections (stars) to lnR → −∞. This behavior can be
combated with additional regularization that penalizes very
large ratios σ=

ffiffiffi
τ

p
, as in Eq. (B24).
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Gaussian random variable with zero mean and standard
deviation

ffiffiffi
2

p
, so

δΨ2 ¼ 2σ2n̄2; ðB13Þ
where n̄ ¼ ðn −mÞ= ffiffiffi

2
p

∼ Nð0; 1Þ now follows a unit
normal distribution. Hence,

δΨ2

2σ2
∼ χ2ð1Þ ðB14Þ

is also chi-squared distributed with 1 degree of freedom
and with mean

hδΨ2i
2σ2

¼ 1; ðB15Þ

compare to Eq. (B4). All together,8<
:

δΨ2=δx
2σ2=τ ∼ χ2ð1Þ ðδx ≪ τÞ
δΨ2

2σ2
∼ χ2ð1Þ ðδx ≫ τÞ:

ðB16Þ

We use Eq. (B16) to motivate physical priors on σ2 and τ.
First, we might expect the log merger rate to vary by no
more than δΨmax over the full parameter space. Let Δx be
the full extent of the parameter space and assume that
Δx≳ τ, such that we are in the second case in Eq. (B16).
Then, our expectation is that

q <
δΨ2

max

2σ2
ðB17Þ

for a chi-squared distributed random variable q ∼ χ2ð1Þ.
In particular, we might assert that δΨ2

max=2σ2 occurs at
the 99th percentile q99 of the chi-squared distribution.
The cumulative distribution of a χ2ð1Þ distribution is the
regularized gamma function Pð1=2; q=2Þ, so q99 occurs at

q99 ¼ P−1ð1=2; 0.99Þ ≈ 3.32: ðB18Þ
Inserting into Eq. (B17) and solving for σ, we have

σ <
δΨmaxffiffiffiffiffiffiffiffiffi
2q99

p : ðB19Þ

We therefore choose a prior on σ to enforce Eq. (B19).
Specifically, we adopt a half-Gaussian prior

pðσjΣσÞ ∝ exp

�
−

σ2

2Σ2
σ

�
ðB20Þ

in the range 0 ≤ σ < ∞. The scale Σ2
σ of this prior is chosen

so that 95% of our prior weight occurs below the threshold
set by Eq. (B19). Specifically,

Σσ ¼
δΨmax

2
ffiffiffiffiffiffiffi
q99

p
Erf−1ð0.95Þ : ðB21Þ

Next, consider how we expect our autoregressive process
to vary on small scales. In particular, let δΨevent be the
maximum variation we expect in the log rate on the typical
interevent distance scale δx ≈ Δx=N, where N is the
number of events in our catalog. This distance scale is
likely smaller than the autoregressive process’ correlation
length τ, so we now use the first inequality in Eq. (B16),
demanding that

q <
NδΨ2

event=Δx
2σ2=τ

; ðB22Þ

for q ∼ χ2ð1Þ. We proceed as above, using Eq. (B22) to
define the 99th percentile of q and rearranging to obtain
the limit

σffiffiffi
τ

p < δΨevent

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2q99Δx

s
: ðB23Þ

We impose this limit by adopting another half-Gaussian
prior on the ratio σ=

ffiffiffi
τ

p
,

pðσ= ffiffiffi
τ

p jΣrÞ ∝ exp

�
−
ðσ= ffiffiffi

τ
p Þ2
2Σ2

r

�
; ðB24Þ

with Σr chosen such that 95% of the prior weight occurs
below the limit set by Eq. (B23):

Σr ¼
δΨevent

2Erf−1ð0.95Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
N

q99Δx

s
: ðB25Þ

We can also place limits on the expected length scale τ
of our autoregressive processes. We generally expect the
merger rate to be smoothly varying across the parameter
space of interest, but we also want a prior that will
nevertheless allow for rapid, small-scale variations should
they be demanded by the data. We accordingly place an
unbounded Gaussian prior on ln τ:

pðln τjΣln τÞ ∝ exp

�
−
ðln τ − lnðΔx=2ÞÞ2

2Σ2
ln τ

�
: ðB26Þ

This prior is centered at lnðΔx=2Þ, and we set Σln τ by
considering the minimum length scale that can be mean-
ingfully constrained by N detections. In particular, the data
contain no information about features on scales smaller
than the minimum spacing between events. If we consider
randomly placing N events across an interval of width Δx,
the spacing δx between events will be exponentially
distributed:

pðδxÞ ¼ ðN=ΔxÞe−Nδx=Δx

1 − e−N
; ðB27Þ
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with a cumulative distribution

FðδxÞ ¼ 1 − e−Nδx=ΔX

1 − e−N
; ðB28Þ

normalizing over the range 0 ≤ δx ≤ Δx. With N events,
we expect the minimum spacing δxmin in our sample to
probe the 1=N quantile of this exponential distribution.
Setting F ¼ 1=N and inverting Eq. (B28) then gives

δxmin ¼ −
Δx
N

ln

	
1 −

1

N
ð1 − e−NÞ



; ðB29Þ

this is the minimum length scale we expect to probe with
N events. We choose Σln τ such that 95% of our prior lies
above ln δxmin:

Σln τ ¼
ln δxmin − lnðΔx=2Þffiffiffi
2

p
Erf−1ð1 − 2 × 0.95Þ : ðB30Þ

So far, all of our discussion has concerned priors on the
variance and length scale of an autoregressive process.
We also need to consider a prior on themean of the process,
denoted above as ln r. For all analyses, we place a
logarithmically uniform prior on r,

pðrÞ ¼ 1

r
; ðB31Þ

across the interval 10−6 ≤ ðr=Gpc−3 yr−1Þ ≤ 105, with
pðrÞ ¼ 0 outside this interval.
Together, the product of Eqs. (B20), (B24), (B26),

and (B31) comprise the priors placed on our autoregressive
models, with variances defined by Eqs. (B21), (B25),
and (B30), respectively. These priors still depend on several
yet-undefined choices for Δx, δΨmax, and δΨevent, which

are listed in Table I along with several other derived
quantities characterizing the above priors.
In Sec. II, we discussed how the likelihood is approxi-

mated via a weighted Monte Carlo average over ensembles
of posterior samples; see Eq. (9). Similarly, the expected
number of detections was evaluated by a Monte Carlo
average over a set of successfully found injections;
see Eq. (12). Both approximations break down if these
averages become dominated by a very small number
of posterior samples or found injections. One metric for
gauging the health of Monte Carlo averaging is the
effective sample number. Define wiðΛÞ ¼ Rdðλinj;i;ΛÞ=
ppeðλinj;iÞ to be the weights appearing in the calculation
of NexpðΛÞ in Eq. (12). The effective number of samples
informing this calculation is given by

Ninj
effðΛÞ ¼

(
P

iwiðΛÞ)2P
j(wjðΛÞ)2

: ðB32Þ

In order for the systematic uncertainty in Nexp ¼ ðΛÞ to
remain a subdominant effect in our hierarchical analysis,
it is necessary that Ninj

effðΛÞ≳ 4Nobs [36,100]. Similarly,
define wI;jðΛÞ ¼ RdðλI;j;ΛÞ=ppeðλI;jÞ to be the weights
defined in Eq. (9) over the posterior samples j of each
event I. The number of effective posterior samples inform-
ing each event’s likelihood is then

Nsamp
eff;I ðΛÞ ¼

(
P

jwI;jðΛÞ)2P
k(wI;kðΛÞ)2

: ðB33Þ

In particular, a useful metric is the minimum number
of effective posterior samples, minI N

samp
eff;I ðΛÞ, taken

over events I. Healthy inference generally requires
minI N

samp
eff;I ðΛÞ ≫ 1 [101].

TABLE I. Priors governing the various autoregressive process models used in this paper. For each physical parameter, we give our
choices for the scale values characterizing the priors defined in Appendix B: the domain width δx, the maximum variation δΨmax in the
log merger rate, the maximum interevent variation δΨevent in the log rate, and the number N of measurements considered. We
specifically give eδΨmax and eδΨevent , so the quantities listed in the table are directly interpretable as merger rate variations. Also note that
while the majority of priors use N ¼ 69 (the number of events in our sample), we take N ¼ 138 when analyzing the component spin
magnitude and tilt distributions, as each binary contributes two component spins to our sample. Given these parameter choices, we also
show the derived quantities directly appearing in Eqs. (B20), (B24), and (B26).

Parameter Section Δx eδΨmax eδΨevent N Σσ lnðΔx=2Þ Σln τ Σr δxmin

lnm1 Sec. III 4 102 2 69 0.91 0.69 4.72 0.57 8.5 × 10−4

q Sec. III 1 102 2 69 0.91 −0.69 4.72 1.14 2.1 × 10−4

z Sec. IV 2 102 2 69 0.91 0.0 4.72 0.81 4.2 × 10−4

χ1, χ2 Sec. V 1 102 1.5 138 0.91 0.69 5.57 0.94 5.3 × 10−5

cos θ1; cos θ2 Sec. V 2 102 1.5 138 0.91 0.0 5.57 0.67 1.1 × 10−4

χeff Sec. VI 2 102 2 69 0.91 0.0 4.72 0.81 4.2 × 10−4

χp Sec. VI 1 102 2 69 0.91 −0.69 4.72 1.14 2.1 × 10−4

χ Appendix C 2 102 2 69 0.91 0.0 4.72 0.81 4.2 × 10−4
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For each of our analyses, we monitor Ninj
eff and minNsamp

eff
for signs of poor effective sample counts; see Figs. 17–20 in
Appendix E. Although potential population models with
low effective sample counts are largely discouraged by the
above priors on σ, ln τ, and σ=

ffiffiffi
τ

p
, we further prevent our

inference from exploring models with pathologically low
effective samples by severely penalizing proposed popu-
lations with Ninj

eff < 4Nobs and/or min log10 N
samp
eff < 0.6.

Specifically, we define the function

SðxÞ ¼
�

1

1þ x−30

�
; ðB34Þ

this asymptotes to unity when x is large and falls to
zero when x approaches zero. We then add the terms
lnSðNinj

eff=4NobsÞ þ lnSðmin log10 N
samp
eff =0.6Þ to the log-

likelihood implemented in numpyro. These terms send the
log-likelihood towards −∞ when either of the above
conditions is violated.

APPENDIX C: DEMONSTRATIONS
ON KNOWN POPULATIONS

We demonstrate the machinery developed in
Appendices A and B by injecting and recovering a set
of known distributions. This is useful in verifying that our
methodology works as expected and in diagnosing any
limitations in the performance of our autoregressive model
or interpretation of our results. We consider four toy
populations:
(1) A Gaussian distribution,

pðχÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−ðχ−μÞ2=2σ2 ; ðC1Þ

with μ ¼ 0.05 and σ ¼ 1.
(2) A delta function at zero,

pðχÞ ¼ δðχÞ: ðC2Þ

(3) A mixture between a delta function and a broad
Gaussian,

pðχÞ ¼ fgffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−ðχ−μÞ2=2σ2 þ ð1 − fgÞδðχÞ; ðC3Þ

with μ ¼ 0.5, σ ¼ 0.3, and fp ¼ 0.3.
(4) A half-normal distribution truncated to purely pos-

itive values,

pðχÞ ¼
8<
:

ffiffiffiffiffiffi
2
πσ2

q
e−ðχ−μÞ2=2σ2 ðχ ≥ 0Þ

0 ðχ < 0Þ;
ðC4Þ

with μ ¼ 0 and σ ¼ 0.35.

All four are chosen as plausible distributions of the
effective inspiral spin χeff among binary black hole merg-
ers. Specifically, the first model corresponds approximately
to the measured effective spin distribution reported in
Ref. [6]. The second and third correspond to cases in
which some or all black hole spins are zero, as predicted
in Ref. [66] and initially claimed in Ref. [57] (but
disfavored by Refs. [15,16,60]). The fourth population
corresponds to a situation in which there is no excess of
zero-spin black holes but in which all spins are preferen-
tially aligned and hence give purely positive χeff .
We draw 69 simulated events from each population,

matching the size of the GWTC-3 catalog, and assume
that these events are obtained over T ¼ 1 yr of observation.
For each simulated event i, we draw a “true” value
χtrue;i ∼ pðχÞ and then a random “observed” maximum
likelihood value. To obtain an observed value, we first
draw a random measurement uncertainty according to
log10 σi ∼ Nð−0.9; 0.3Þ, chosen to match the distribution
of χeff uncertainties among events in GWTC-3. We then
randomly draw an observed value χobs;i ∼ Nðχtrue;i; σiÞ.
Finally, we randomly draw 1000 mock posterior samples
per event, assuming these are Gaussian distributed about
χobs;i with standard deviation σi. For simplicity, we assume
a flat selection function. To most accurately test the
behavior of our method, however, we still compute the
expected number of detections Nexp using a Monte Carlo
average over a set of 104 discrete samples, as in Eq. (12). In
particular, this means that our inference can still experience
the instability discussed above in Appendix B. The final
line in Table I defines the prior placed on our autoregressive
model in each of the four cases.
Our results are shown in Fig. 16. For each injected

population, the left-hand column shows our recovery of the
normalized probability distribution, while the right-hand
column shows inferred rate densities dR=dχ. In all cases,
the underlying distributions from which mock events
are drawn are shown via dashed red curves. Case 1 shows
faithful recovery of a Gaussian distribution, with the
reconstructed probability distribution and rate density
closely matching the injected population within the range
−0.5≲ χ ≲ 0.5. Beyond this range, we see that, although
our recovered rate density is able to fall by approximately
3 orders from the center to the edge of the domain, it is
unable to go strictly to zero. Instead, the autoregressive
process asymptotes to dR=dχ ≈ 0.5 in regions with no data.
Note that this asymptotic limit corresponds to the threshold
below which we expect no additional events on top of our
69 simulated detections after T ¼ 1 yr of observation. As
our catalog increases in size, the continued nonobservation
of events at jχj≳ 0.5 will further suppress tails in the
recovered rate density.
Case 2 behaves similarly. Although our autoregressive

model cannot truly produce a delta function distribution,
we recover a narrow distribution centered at χ ¼ 0.
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FIG. 16. Demonstrated autoregressive inference of four simulated populations, as described in Appendix C. The left column indicates
the normalized probability distributions recovered in each case, while the right column shows inferred rate densities. In the right-hand
column, the median recovered autocorrelation length τ and standard deviation eσ of the process are shown via the horizontal and vertical
error bars (recall that σ2 defines the variance of the logarithmic number density). In each case, true distributions are indicated as dashed
red curves.

PARAMETER-FREE TOUR OF THE BINARY BLACK HOLE … PHYS. REV. X 14, 021005 (2024)

021005-29



Once more, we see that the inferred rate falls by 3 orders
of magnitude between χ ¼ 0 and jχj≳ 0.5, with asymptotic
tails in regions with no data. In Case 4, illustrating recovery
of a broad half-Gaussian distribution, we correctly recover
the injected rate density from its peak of dR=dχ ≈ 102 at
χ ¼ 0 down to dR=dχ ≈ 1 at χ ¼ 0. At negative χ, Case 4
shows the same asymptotic tail exhibited by Cases 1 and 2.
One limitation of our autoregressive model is illustrated

in Case 3, in which our injected population is a mixture
between a delta function at χ ¼ 0 and a broad Gaussian at
positive χ. We see that both features, a primary peak at
χ ¼ 0 and a secondary peak at χ ¼ 0.5, are correctly and
confidently identified by our inference despite the order-of-
magnitude difference in the prominence of these features.
The rate density of events arising from the half-Gaussian, in
particular, is well recovered even out to χ ¼ 1. At the same
time, our autoregressive model struggles to produce an
extremely sharp feature at χ ¼ 0while also fitting the broad
Gaussian. Recovery of the Gaussian serves to fix the
autocorrelation length τ of the process to reasonably large
values, in turn limiting the resolution with which the delta
function can be resolved. Compare, for example, the
recovery of the delta function in Case 3 to the much
sharper recovery of an isolated delta function in Case 2.

APPENDIX D: STRONGLY PARAMETRIZED
MODELS

In the main text, we studied the distributions of black
hole masses (Sec. III), spins (Secs. Vand VI), and redshifts
(Sec. IV), modeling each set of distributions, in turn, as
autoregressive processes. To accurately measure the pop-
ulation distribution of any one parameter, it is generally
necessary to simultaneously fit for the distributions of other
parameters. Therefore, wherever we focused on modeling a
specific subset of parameters using autoregressive models,
we concurrently fit the remaining parameters using simple
strongly parametrized models. The priors used for each of
the following models are given in Table II.
Our parametric mass model assumes that primary masses

are drawn from a mixture between a power law and a
Gaussian peak, with possible tapering at low and high

masses. This model is a variant of the POWER LAW+PEAK

model first defined in Ref. [10] and used in depth in
Refs. [6,9]. Specifically, we define

ϕðm1Þ¼
fpffiffiffiffiffiffiffiffiffiffiffi
2πσ2m

p exp

�
−
ðm1−μmÞ2

2σ2m

�

þð1−fpÞ
�

1þλ

ð100M⊙Þ1þλ−ð2M⊙Þ1þλ

�
mλ

1 ðD1Þ

to be the superposition of a power law and Gaussian; the
former is normalized in the range 2M⊙ ≤ m1 ≤ 100M⊙
with spectral index λ, while the latter is centered at mean μm
with standard deviation σm. The parameter fp controls the
relative contribution of each component. Our complete
primary mass distribution is of the shape

fðm1Þ ¼

8>>><
>>>:

ϕðm1Þ exp
h
−ðm1−mlowÞ2

2δm2
low

i
ðm1 < mlowÞ

ϕðm1Þ ðmlow ≤ m1 ≤ mhighÞ
ϕðm1Þ exp

h
−ðm1−mhighÞ2

2δm2
high

i
ðmhigh < m1Þ;

ðD2Þ

with squared exponentials that taper fðm1Þ towards zero
above and below mlow and mhigh, respectively. The tapering
scales δmlow and δmhigh are additional free parameters
inferred from the data. Mass ratios, in turn, are assumed to
follow a power-law distribution, with

pðqjm1Þ ¼
�

1þ βq

m
1þβq
1 − ð2M⊙Þ1þβq

�
m

βq
2 : ðD3Þ

This parametric mass model is used in Secs. IV–VI, and
when focusing on autoregressive modeling of black hole
spins and redshifts.

TABLE II. Parameters characterizing the ordinary strongly para-
metrized models discussed in Appendix D. For each parameter, we
indicate its defining equation, the sections in which it is used, and
its associated prior. We useNða; bÞ to denote a Gaussian prior with
mean a and standard deviation b, Uða; bÞ to indicate a uniform
prior between a and b, and LUða; bÞ to indicate a logarithmically
uniform prior between the given bounds.

Parameter Defined Sections Prior

λ Eq. (D1) IV,V,VI N(0, 10)
μm Eq. (D1) IV,V,VI Uð20M⊙; 50M⊙Þ
σm Eq. (D1) IV,V,VI Uð2M⊙; 15M⊙Þ
fp Eq. (D1) IV,V,VI LUð10−3; 1Þ
mlow Eq. (D2) IV,V,VI Uð5M⊙; 15M⊙Þ
mhigh Eq. (D2) IV,V,VI Uð50M⊙; 100M⊙Þ
δmlow Eq. (D2) IV,V,VI LUð0.1M⊙; 10M⊙Þ
δmhigh Eq. (D2) IV,V,VI LUð3M⊙; 30M⊙Þ
βq Eq. (D3) IV,V,VI N(0, 4)

μχ Eq. (D4) III,IV U(0, 1)
σχ Eq. (D4) III,IV LU(0.1, 1)
σu Eq. (D5) III,IV U(0.3, 2)

κ Eq. (D6) III,V,VI N(0, 5)
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When nonparametrically exploring the black hole mass
and redshift distributions, we revert to a parametric spin
model in which component spin magnitudes and spin-orbit
tilt angles are independently and identically distributed as
truncated normal distributions. Each component spin mag-
nitude in a given binary has a probability distribution

pðχiÞ ¼
ffiffiffiffiffiffiffiffi
2

πσ2χ

s
e−ðχi−μχÞ2=2σ2χ

Erf

�
1−μχffiffiffiffiffi
2σ2χ

p
�
þ Erf

�
μχffiffiffiffiffi
2σ2χ

p
� ; ðD4Þ

with a mean μχ and standard deviation σχ that are inferred
from the data. The cosines of component spin-tilt angles,
meanwhile, are independently distributed as

pðcos θiÞ ¼
ffiffiffiffiffiffiffiffi
2

πσ2u

s
e−ðcos θi−1Þ2=2σ2u

Erf

�
−2ffiffiffiffiffi
2σ2u

p
� ; ðD5Þ

with a mean fixed to 1 but a standard deviation σu measured
from the data. This parameteric model is used in Secs. III
and IV when targeting binary masses and redshifts with our
autoregressive prior.
Finally, when targeting binary masses or spins, we revert

to a standard parametric redshift model in which the
comoving merger rate density grows as

Rðθ; zÞ ∝ ð1þ zÞκ: ðD6Þ

The observed detector-frame merger rate per unit redshift
correspondingly grows as

RðzÞ ∝ ð1þ zÞκ−1
�
dVc

dz

�
; ðD7Þ

where the additional factor of ð1þ zÞ−1 converts between
source- and detector-frame rates. This parametric model is
adopted in Secs. III, V, and VI when nonparametrically
measuring the black hole mass and spin distributions.

APPENDIX E: ADDITIONAL POSTERIORS
AND PREDICTIVE CHECKS

In this appendix, we show a few more supplemental
results that may be useful in assessing the behavior and
performance of our population inference with an autore-
gressive model.
As discussed elsewhere, our autoregressive process

models are characterized by hyperparameters σ and τ
controlling the variance and autocorrelation length of the
(log) merger rate. Figures 17–20 show the posteriors
obtained on these parameters for each autoregressive model
used in the main text. For diagnostic purposes, these figures
also show quantities related to the effective number of

samples informing our inference. Included in each corner
plot is the distribution of effective injections per observa-
tion, Ninj

eff=Nobs, and the distribution of effective posterior
sample counts, minimized across events. See Appendix B
for further details regarding these diagnostics.
Furthermore, we assess the validity of our results using

posterior predictive checks, comparing distributions of
observed binary parameters to distributions predicted by
our fitted models. Catalogs of “observed” and “predicted”
parameters are generated by resampling individual
event posteriors as well as the set of injections used
elsewhere to compute NexpðΛÞ. This process proceeds as
follows [102]:
(1) Randomly draw a sample Λi from our posterior

on the population parameters Λ (this includes the
variables characterizing strongly parametrized
models, as well as latent parameters defining any
autoregressive processes in use).

(2) For each observed event, with posterior samples fλjg,
compute weights wj ¼ RdðλjjΛiÞ=ppeðλjÞ, the ratios
between the detector-frame distribution defined by Λi
and the parameter estimation prior ppeðλÞ.

(3) From each observed event, draw a single sample λj
with draw probabilities proportional to the weights
fwjg. The resulting set fλg defines a single catalog
of “observed” parameters consistent with our data.

(4) For each successfully recovered injection, with param-
eters fλinj;jg, compute weights wj¼Rdðλinj;jjΛiÞ=
pinjðλinj;jÞ, wherepinjðλÞ is the distribution fromwhich
injections were drawn.

(5) Draw Nobs values λinj;j with draw probabilities
proportional to the above weights. The resulting
set fλinjg defines a single catalog of “predicted”
parameters consistent with the proposed population
Λi and with appropriate selection effects.

(6) Sort the “observed” and “predicted” catalogs, and
plot against one another.

(7) Repeat.
Figure 21 shows the result of this algorithm using the

population model adopted in Sec. III, in which the primary
mass and mass ratio distributions of binary black holes
are described as autoregressive processes. For convenience,
the dotted black lines mark the diagonals along which
“observed” and “predicted” values are equal. A systematic
deviation from this diagonal would indicate tension
between our model (and its corresponding predictions)
and our observed data. In Fig. 21, all traces are system-
atically clustered around the diagonal, with no indication
of systematic mismodeling. Figures 22–24 similarly show
predictive checks on the autoregressive models used in
Secs. IV–VI to describe distributions of binary redshifts,
component spins, and effective spins; they also indicate
good agreement between our autoregressive models and
observed data.
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In addition to checking model validity, the catalogs of
“predicted” detections enable other related calculations
regarding the locations in which detections are expected
(or not expected) to arise. In particular, we saw in
Appendix C that autoregressive processes can exhibit
prior-dominated tails in regions with no data and that
the onset of these tails can be characterized by identifying
regions in which fewer than one detection is predicted by

the fitted model. Accordingly, we can use the ensembles of
“predicted” detections appearing in Figs. 21–24 to assess
the statistical significance of tails appearing in our autor-
egressive results, calculating threshold values above or
below which fewer than N detections are predicted by our
fitted models, on average. The results of this calculation are
quoted in Secs. V and VI in the main text, when discussing
the robustness of our recovered spin distributions.

FIG. 17. Posteriors on the hyperparameters characterizing the primary mass and mass-ratio distributions presented in Sec. III. As a
diagnostic, we also include the effective number of injections per observed event and the effective number of posterior samples
informing the per-event likelihood, minimized over the 69 events in our sample.
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FIG. 18. As in Fig. 17 but for the redshift evolution of the merger rate shown in Sec. IV.
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FIG. 19. As in Fig. 17 but for the component spin distributions shown in Sec. V.
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FIG. 20. As in Fig. 17 but for the effective spin distributions shown in Sec. VI.

FIG. 21. Posterior predictive check on primary masses and mass ratios, according to the autoregressive model over lnm1 and q
presented in Sec. III. Each trace corresponds to an individual pass through the algorithm described in Appendix E. In both cases, traces
are centered along the diagonal (marked with a dotted black line), indicating no tension between the fitted population model and our
observed data.
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FIG. 22. As in Fig. 21 but for the redshift distribution modeled as an autoregressive process in Sec. IV.

FIG. 23. As in Fig. 21 but for the component spin magnitude and tilt distributions modeled as autoregressive process in Sec. V. We
show predictive checks on both component spins to gauge any inconsistency with our assumptions regarding component spin
independence; see Eq. (29).
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