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The transverse field Ising chain model is ideally suited for testing the fundamental ideas of quantum
phase transitions because its well-known T ¼ 0 ground state can be extrapolated to finite temperatures.
Nonetheless, the lack of appropriate model materials hindered the past effort to test the theoretical
predictions. Here, we map the evolution of quantum fluctuations in the transverse field Ising chain based on
nuclear magnetic resonance measurements of CoNb2O6, and we demonstrate the finite-temperature effects
on quantum criticality for the first time. From the temperature dependence of the 93Nb longitudinal
relaxation rate 1=T1, we identify the renormalized classical, quantum critical, and quantum disordered
scaling regimes in the temperature (T) vs transverse magnetic field (h⊥) phase diagram. Precisely at the
critical field hc⊥ ¼ 5.25� 0.15 T, we observe a power-law behavior, 1=T1 ∼ T−3=4, as predicted by
quantum critical scaling. Our parameter-free comparison between the data and theory reveals that quantum
fluctuations persist up to as high as T ∼ 0.4J, where the intrachain exchange interaction J is the only energy
scale of the problem.
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I. INTRODUCTION

The concept of T ¼ 0 quantum phase transitions has
emerged as an overarching theme in strongly correlated
electron physics [1–9]. The nature of quantum fluctuations
near the quantum critical point, however, remains enig-
matic [10]. How well does the quantum criticality account
for finite-temperature properties? How high in temperature
does the effect of the quantum critical point persist [10,11]?
Do quantum fluctuations remain strong enough at elevated
temperatures to account for the mechanism of exotic
superconductivity in copper oxides, iron pnictides, and
heavy-fermion systems? The dearth of appropriate model
materials for rigorously solvable Hamiltonians has not
permitted experimentalists to address these fundamental
questions concretely, even for the transverse field Ising
chain (TFIC) [12], a celebrated textbook example of
quantum criticality [6]. Very recently, the Ising chain
material CoNb2O6 [13–19] was proposed as an ideal model
system of the TFIC based on neutron scattering measure-
ments in transverse magnetic fields [20], paving a new

avenue to investigate the finite-temperature effects on
quantum fluctuations in the vicinity of a quantum critical
point (QCP).
The TFIC Hamiltonian is deceptively simple [6,12]:

H ¼ −JX
i

ðσziσziþ1 þ gσxi Þ; ð1Þ

where J (> 0 for ferromagnetic Ising chains in CoNb2O6)
represents the nearest-neighbor spin-spin exchange inter-
action, σzðxÞi is the zðxÞ component of the Pauli matrix at the
ith site, and the dimensionless coupling constant g is related
to the transverse magnetic field h⊥ applied along the x axis
as g ¼ h⊥=hc⊥, where hc⊥ is the critical field
(hc⊥ ¼ 5.25� 0.15 Tesla in CoNb2O6, as shown below).
Since σzi and σxi do not commute, the classical Ising
Hamiltonian for g ¼ 0 becomes the quantum TFIC
Hamiltonian for g > 0. The QCP is located at g ¼ 1, where
the applied field is tuned precisely at hc⊥; a magnetic field
greater than hc⊥ coerces the magnetic moments along its
direction and transforms the T ¼ 0 ferromagnetic ground
state to a paramagnetic state. See Fig. 1 for the generic
theoretical phase diagram of the TFIC [6,21]. In spite of its
apparent simplicity, the TFIC served as the foundational
model for quantum Monte Carlo simulations [22], and it
continues to attract attention in quantum information
theory [23].
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A major advantage of working with the TFIC as a model
system for testing the fundamental ideas of quantum phase
transitions is that, in the absence of a transverse magnetic
field (g ¼ 0), the thermodynamic properties of the Ising
chain can be rigorously solved at arbitrary temperatures
[24]. Even in a finite transverse field (g > 0), the TFIC is
well understood at T ¼ 0 [12,22,25], and quantum critical
(QC) scaling theory extends the T ¼ 0 results to finite
temperatures [6,21].
We show the crystal structure of CoNb2O6 in Fig. 2 [26].

All the pictorial images of the crystal structure in this paper
were drawn using VESTA [27]. The Co-O-Co chains
propagate along the c axis, and the easy axis of the Co
moments lies within the ac plane [14,15]. The ferromag-
netic super-exchange interaction between the nearest-
neighbor Co ions is estimated to be J ¼ 17–23 K, based
on ESR [18] and neutron scattering [20] measurements.
From the disappearance of magnetic Bragg peaks in the
transverse magnetic field applied along the b axis, the
three-dimensional (3D) critical field was estimated to be
hc;3D⊥ ¼ 5.5 Tesla [20,28]. The interchain couplings
between adjacent Co chains are antiferromagnetic
[14,20], weaker than J by an order of magnitude
[18,20], and frustrated [14,29]. This means that the 3D
magnetic long-range order induced by interchain inter-
actions, which tends to mask the effects of the one-
dimensional (1D) QCP of the individual Ising chains, is
suppressed; the 3D ordering temperature is as low as
T3D
c ¼ 2.9 K even in h⊥ ¼ 0 [14,15]. Combined with

the modest J, Ising chains in CoNb2O6 are ideal for testing
the TFIC Hamiltonian, but they were overlooked for three
decades.
In what follows, we will report on a 93Nb nuclear

magnetic resonance (NMR) investigation of quantum spin
fluctuations in CoNb2O6. NMR is a powerful low-energy
probe, and it is good at probing the physical properties near
QCPs [30–38]. We will map the evolution of low-energy
quantum fluctuations of Co spins near the QCP by taking
advantage of the hyperfine interactions between Co elec-
tron spins and 93Nb nuclear spins. We will experimentally
verify the phase diagram of the TFIC in Fig. 1 above T ¼ 0
for the first time and demonstrate that the effect of the QCP
persists at finite temperatures as high as T ∼ 0.4J.

II. EXPERIMENTAL

We grew the CoNb2O6 single crystal from a stoichio-
metric mixture of cobalt and niobium oxides using a
floating zone furnace. We assessed the surface quality
and oriented the crystal utilizing Laue x-ray diffractometry.
Once the material was sectioned into oriented slices along
the a, b, and c crystallographic directions, these were
individually scanned with the Laue diffractometer, and
they showed a uniform, single-crystalline structure. A small
section of the single crystal was ground into a powder
and analyzed using powder x-ray diffraction, which
showed only single-phase cobalt niobate in the crystal
within instrument resolution. The features present in the
SQUID magnetometry data shown in Fig. 2(d) matched
previously published data on this material [14].
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FIG. 1. A generic T − h⊥ phase diagram of the TFIC encom-
passes three scaling regimes with distinct behaviors of the spin-
spin correlation length ξ: RC [g < 1, hence h⊥ < hc⊥, and
ξ ∼ expðþΔ=TÞ], QC (ξ ∼ 1=T), and QD (g > 1, hence
h⊥ > hc⊥, and ξ ∼ constant) [6]. The dashed and dotted lines
represent the crossover temperature from the QC to the RC
regime at T ∼ Δ and from the QC to the QD regime at T ∼ jΔj,
respectively. An isolated 1D Ising chain would exhibit ferro-
magnetic long-range order only at T ¼ 0 below hc⊥, but the 3D
interchain couplings lead to a 3D order at T > 0 up to hc;3D⊥
(> hc⊥). The filled circle at T ¼ 0 and the 1D critical field hc⊥
represents the QCP of the individual Ising chain.
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FIG. 2. (a) The crystal structure of CoNb2O6. (b) Both mag-
netic CoO6 and nonmagnetic NbO6 octahedra form a chain along
the c axis, as seen from the c-axis direction. The Nb-O-Nb chain
is inside an isosceles triangle formed by three Co-O-Co chains.
The transverse field h⊥ is applied along the b axis. (c) Each Nb
site is bonded with two Co-O-Co chains across O sites. (d) Bulk
magnetic susceptibility χ data measured with SQUID in an
external magnetic field of 0.01 T.
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For NMR measurements, we cut a piece of single crystal
with the approximate dimensions of 4mm×2mm×5mm.
We glued the crystal to a sturdy sample holder made of
machinable aluminum oxide (MACOR ceramic) with a
thickness of around 3 mm to ensure that the crystal
orientation did not change at low temperatures. We found
that the strong magnetic torque applied to the crystal by the
external magnetic field could easily bend sample holders
made of soft materials such as plexiglass or plastic, and
introduce noticeable systematic errors below around 10 K.
We observed 93Nb NMR in a broad range of temperature

from 2 K (around 0.1J) up to 295 K. We show the typical
93Nb NMR spectrum in the inset of Fig. 3. Since the 93Nb
nuclear spin is I ¼ 9=2, we observed four pairs of satellite
transitions split by a quadrupole frequency νbQ ¼ 1.9 MHz,
in addition to the large central peak arising from the Iz ¼
þ 1

2
to − 1

2
transition. In the main panel of Fig. 3, we also

show the temperature dependence of the central transition
in h⊥ ¼ 5.3 Tesla applied along the b axis.
We measured the 93Nb longitudinal relaxation rate 1=T1

by applying an inversion π pulse prior to the π=2 − π spin-
echo sequence and by monitoring the recovery of the spin-
echo intensity MðtÞ as a function of the delay time t. The
typical width of the π=2 pulse was around 1 μs. We fit these
recovery curves to the solutions of the rate equation [39]:

MðtÞ ¼ Mð∞Þ − A
X9
j¼1

aje−bjt=T1 ; ð2Þ

with three free parameters:Mð∞Þ, A, and 1=T1. By solving
the coupled rate equations for I ¼ 9

2
under the appropriate

initial condition, one can calculate and fix the coefficients
as ða1; a2; a3; a4; a5; a6; a7; a8; a9Þ ¼ ð0.653; 0; 0.215; 0;
0.092; 0; 0.034; 0; 0.06Þ for the central transition and
(0.001, 0.0112, 0.0538, 0.1485, 0.2564, 0.2797, 0.1828,
0.0606, 0.0061) for the Iz ¼ � 7

2
to Iz ¼ � 9

2
fourth satellite

transitions, while ðb1; b2; b3; b4; b5; b6; b7; b8; b9Þ ¼
ð45; 36; 28; 21; 15; 10; 6; 3; 1Þ for both cases [39].
An example of the signal recovery of the central

transition observed at 130 K in h⊥ ¼ 3 Tesla is shown
in Fig. 4, in comparison to that observed for a fourth
satellite transition on the higher-frequency side. Our results
in Fig. 4 confirm that the best-fit values of 1=T1 agree
within around 2% between the central and satellite tran-
sitions. The central transition is the strongest among all
nine peaks, as shown in the inset of Fig. 3, and hence most
advantageous in terms of the signal intensity. When the
relaxation rate exceeds 1=T1 ∼ 2 × 103 s−1, however, accu-
rate measurements of 1=T1 using the central transition
become increasingly difficult because the recovery curve
MðtÞ is dominated by two extremely fast normal modes,
0.653e−45t=T1 þ 0.215e−28t=T1 ; the signal intensity MðtÞ
begins to recover at a time scale comparable to the
inversion pulse width. Accordingly, measurements of
1=T1 using the fourth satellite transition become more
advantageous in the low-temperature, low-field regime
because the recovery curve is dominated by slower normal
modes, 0.256e−15t=T1 þ 0.279e−10t=T1 . We present an
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observed at 7.507 T using the FFT of spin-echo signals. The
largest peak in the middle is the central transition, and four
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FIG. 4. Examples of the recovery of the spin-echo intensity,
MðtÞ, observed for the central and fourth satellite transitions at
130 K in h⊥ ¼ 3 Tesla. For comparison, we normalized the
recovery curves by plotting 1 − ½Mð∞Þ −MðtÞ�=A as a function
of t. The solid lines represent the best fit with 1=T1 ¼ 1.99 ×
103 s−1 for the central transition and 1=T1 ¼ 1.96 × 103 s−1 for
the fourth satellite transition, as described in the text. Also plotted
is the recovery curve observed for the fourth satellite peak at 2 K
in h⊥ ¼ 5.2 Tesla.
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additional example of the 1=T1 measurement using the
fourth satellite at 2 K and h⊥ ¼ 5.2 Tesla in Fig. 4.

III. RESULTS AND DISCUSSIONS

A. T and h⊥ dependences of 1=T1

In Fig. 5, we summarize the T and h⊥ dependences of
1=T1. Notice that 1=T1 varies by more than 3 orders of
magnitude between h⊥ ¼ 3 and 9 T. Quite generally, 1=T1

probes the wave-vector k integral within the first Brillouin
zone of the dynamical spin structure factor Sðk;ωnÞ at the
NMR frequency ωn=2π (around 50 MHz):

1=T1 ¼
X
k

jahf j2Sðk;ωnÞ; ð3Þ

where ahf is the hyperfine coupling between the observed
nuclear spin and Pauli matrices. In essence, 1=T1 measures
the strength of Co spin fluctuations at the time scale set by
the NMR frequency.
Our 1=T1 data in Fig. 5 exhibit two distinct field regimes

at low temperatures because the spin excitation spectrum
changes its character across hc⊥, as summarized in Fig. 6.
Below hc⊥ ∼ 5.3 Tesla, 1=T1 diverges gradually toward
T ¼ 0, signaling the critical slowing down of Co spin
fluctuations in the renormalized classical (RC) [2] regime
of Fig. 1 toward the T ¼ 0 ferromagnetic ground state of
each individual Ising chain. In other words, the spectral
weight of the Co spin-spin correlation function grows at the
quasielastic peak located at k ¼ 0 in Fig. 6(a), below
hc⊥ ∼ 5.3 Tesla. The Co spin-spin correlation length ξ
along the chain grows as ξ ∼ expðþΔ=TÞ in the RC
regime [6], where Δ is the gap in the spin excitation

spectrum, as defined in Fig. 6(a). Accordingly, we expect
1=T1 ∼ expðþΔ=TÞ for T ≪ Δ. We summarize the details
of the theoretical expressions of 1=T1 for the TFIC in
Appendix A.
In contrast, 1=T1 observed above hc⊥ ∼ 5.3 Tesla satu-

rates and begins to decrease with temperature. We recall
that the T ¼ 0 ground state remains paramagnetic in the
quantum disordered (QD) regime above hc⊥, as shown in
Fig. 1, and hence there is no quasielastic mode of spin
excitations in Fig. 6(b). The latter implies that 1=T1 in the
QD regime is dominated by the thermal activation of spin
excitations across the gap, jΔj. Therefore, we expect
1=T1 ∼ expð−jΔj=TÞ for T ≪ jΔj. We have thus identified
the 1D QCP (one-dimensional QC point) of each individual
Ising chain as hc⊥ ∼ 5.3 Tesla.

B. Estimation of the spin excitation gap Δ

In Fig. 7(a), we present the exponential fit of
1=T1 ∼ expðΔ=TÞ, with Δ as a free parameter. We sum-
marize the h⊥ dependence of Δ in Fig. 7(b). The fitting
range barely satisfies T < jΔj near h⊥ ∼ 5.3 Tesla, limiting
the accuracy of our estimation of Δ. To improve the
accuracy, we constructed the scaling plots of Tþ0.75=T1

as a function of Δ=T in Fig. 8. We first estimated the
magnitude of Δ from Fig. 7(a). Subsequently, for the field
range between 5.0 and 6.7 T, we made slight adjustments to
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FIG. 6. (a) The two components of the spin excitation spectrum
in the RC regime: the quasielastic peak at the origin (represented
by a filled dot) and the propagating domain walls, as schemati-
cally shown in the inset. The dispersion of the latter (solid curve)
is ϵðkÞ ¼ J½2 − 2g cosðkÞ þOðg2Þ�, with an excitation gap Δ ¼
2Jð1 − gÞ [6]. The quasielastic peak becomes a Bragg peak when
ξ diverges toward the 1D ferromagnetic long-range order at
T ¼ 0. Since NMR is a low-energy probe, our 1=T1 data
measured below hc⊥ probe the quasielastic mode. (b) The spin
excitation spectrum in the QD regime, ϵðkÞ ¼ Jg½2 −
ð2=gÞ cosðkÞ þOð1=g2Þ� with a gap jΔj ¼ 2j1 − gj [6], which
arises from the propagation of flipped spins (inset). Unlike the RC
regime, there is no quasielastic peak.
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the magnitude of Δ to improve the scaling collapse in
Fig. 8. The final results of Δ thus estimated from Fig. 8 are
presented in Fig. 7(b) using filled triangle. We note that this
procedure changes the estimated value of Δ only by a
few K.
Remarkably, we found that Δ varies linearly with h⊥.

This linear behavior is precisely what we expect from the
theoretical prediction for the nearest-neighbor quantum
Ising chain, Δ ¼ 2Jð1 − h⊥=hc⊥Þ [6]. From the intercept of

the linear fit with the horizontal axes, we estimate
hc⊥ ¼ 5.25� 0.15 Tesla. This 1D critical field observed
by our NMR measurements agrees very well with the
earlier observation of the saturation of the so-called E8

golden ratio [20]. From the intercept of the linear fit with
the vertical axis, we also estimate J ¼ 17.5þ2.5−1.5 K, in
excellent agreement with earlier reports based on ESR
[18] and neutron scattering [20].

C. Phase diagram of the TFIC in CoNb2O6

We present the color plot of 1=T1 in Fig. 9. Also shown
in Fig. 9 are the crossover temperatures, Δ and jΔj, based
on the linear fit in Fig. 7(b). Our color plot visually captures
the crossover from the QC regime to the RC and QD
regimes. We are the first to verify the theoretical T − h⊥
phase diagram in Fig. 1 for finite temperatures, T > 0,
using an actual material.

D. Quantum criticality of the TFIC at finite
temperatures

Having established the phase diagram of the TFIC in
CoNb2O6, we are ready to test the finite-temperature
properties of the QC regime located between the RC
and QD regimes. At the 1D critical field hc⊥, we applied
QC scaling to Eq. (3) and obtained

1=T1 ¼ 2.13jahf j2J−0.25T−0.75; ð4Þ

for the nearest-neighbor TFIC [see Eq. (A7) for the details].
We determined the hyperfine form factor jahf j2 based on the
93Nb NMR frequency-shift measurements and used Eq. (4)
to estimate 1=T1 ¼ ð4.2–8.4Þ × 103T−0.75 s−1 at finite
temperatures above the QCP without any adjustable
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parameters. We refer readers to Appendix B for the details
of the data analysis. This parameter-free prediction is in
excellent quantitative agreement with our experimental
finding, 1=T1 ∼ 6.2 × 103T−0.75 s−1, as shown by a solid
line in Fig. 5 through the data points observed at 5.2 T.
Thus the QC scaling theory accounts for the low-frequency
spin dynamics of the TFIC above T ¼ 0 at a quantita-
tive level.
It is equally important to realize that 1=T1 data exhibit

the expected power-law behavior, 1=T1 ∼ T−0.75, up to
∼7 K, which corresponds to T ∼ 0.4J. Our finding there-
fore addresses an important and unresolved question that
the strongly correlated electrons community has faced for
years: How high in temperature does the effect of the QCP
persist? For the TFIC, the quantum fluctuations originating
from the zero-temperature QCP persist up to as high as
T ∼ 0.4J. Our experimental finding is consistent with the
earlier theoretical report that the QC scaling holds up to
T ∼ 0.5J for the TFIC [11].

IV. SUMMARY AND CONCLUSIONS

Using the quasi one-dimensional Co chains in CoNb2O6,
we experimentally tested the quantum criticality of the
TFIC at finite temperatures above T ¼ 0 for the first time.
Based on the measurements of the 93Nb longitudinal
relaxation rate 1=T1, we identified the distinct behaviors
of low-frequency spin fluctuations in the RC, QC, and QD
scaling regimes of the TFIC and constructed the T − h⊥
phase diagram of the TFIC in Fig. 9. We observed no
evidence for a crossover into the 3D regime in the temper-
ature and field range of our concern. We also reported the
transverse field (h⊥) dependence of the spin excitation gap
parameter Δ in Fig. 7(b); our results exhibit a linear
dependence on h⊥, in agreement with the theoretical
prediction for the nearest-neighbor TFIC. Our 1=T1 data
observed for the QC regime near hc⊥ ≈ 5.25 T exhibit the
expected mild power-law divergence, 1=T1 ∼ T−0.75,
toward the quantum critical point at T ¼ 0. Furthermore,
the parameter-free prediction based on quantum critical
scaling reproduces the magnitude of 1=T1 within about
�36%. Our results in Fig. 5 establish that the quantum
critical behavior persists to as high as T ∼ 0.4J. To the best
of our knowledge, this is the first example of the quanti-
tative test of the finite-temperature effects on quantum
criticality for model Hamiltonians with a rigorously solv-
able ground state.
We mark the upper bound of the QC scaling regime,

T ∼ 0.4J, in Fig. 9 with a horizontal arrow. Such a robust
quantum criticality observed at finite temperatures above
the QCP is in stark contrast with the case of thermally
induced classical phase transitions; the critical region of the
latter generally narrows as the phase-transition temperature
approaches zero, and eventually diminishes at T ¼ 0 [10].
Many authors have constructed analogous color plots for
different parameters (such as electrical resistivity) for a

variety of strongly correlated electron systems, including
copper-oxide and iron-pnictide high-Tc superconductors
and heavy-fermion systems [8,9]. The aim of these authors
was to build a circumstantial case that quantum fluctuations
persist at finite temperatures far above the QCP. The overall
similarity between our Fig. 9 and the case of high-Tc
cuprates and other exotic superconductors gives us hope
that quantum fluctuations may indeed account for the
mechanism of exotic superconductivity.
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Note added.—After the initial submission of this work, a
theoretical prediction was made for the temperature
dependence of 1=T1 under the presence of an internal
longitudinal magnetic field in the three-dimensionally
ordered state [40]. The three-dimensional effects [29,40],
however, are beyond the scope of the present work.

APPENDIX A: THEORETICAL DERIVATION OF
1=T1 IN THE QUANTUM ISING CHAIN

Here, we summarize the derivations of the theoretical
expressions of 1=T1 in the TFIC. Our notation will be the
same as in Ref. [6]. Some results will be specific to the
nearest-neighbor Ising model, but most are more generally
applicable to the vicinity of the quantum critical point of a
generic one-dimensional Ising chain. In general, the NMR
relaxation rate is defined by

1

T1

¼ lim
ω→0

2T
ω

Z
dk
2π

jahf j2Imχðk;ωÞ; ðA1aÞ

¼
Z

dk
2π

jahf j2Sðk;ω ¼ 0Þ; ðA1bÞ

¼
Z þ∞

−∞
dtjahf j2Cðx ¼ 0; tÞ; ðA1cÞ

where ahf represents the hyperfine coupling between the
nuclear spin and the Pauli matrices σ, as defined by the
hyperfine Hamiltonian Ĥhf ¼ Î · ahf · σ̂. We define the
correlation function for Pauli matrices, and ℏ ¼ kB ¼ 1
unless noted otherwise.

1. Renormalized classical regime

This region is characterized by an energy gapΔ∼ðgc−gÞ
and a T ¼ 0 ordered moment No ∼ ðgc − gÞ1=8. No repre-
sents the ordered moment of an Ising chain at T ¼ 0 and
should not be confused with the 3D ordered moment
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induced by interchain couplings. By expressing our results
in terms of Δ and No, they are generally valid beyond
the nearest-neighbor model. For the specific case of the
nearest-neighbor model, we have Δ ¼ 2Jð1 − gÞ and
No ¼ ð1 − g2Þ1=8. The result for Cðx; tÞ may be found
below (4.81) in Ref. [6], and this leads to

1

T1

¼ jahf j2
πN2

o

T
eþΔ=T: ðA2Þ

Notice that 1=T1 is expected to diverge exponentially, even
though there is an energy gap Δ in the excitation spectrum
of the domain-wall quasiparticles. This is because NMR is
a low-energy probe, and 1=T1 in the RC regime is
dominated by the low-frequency spin fluctuations associ-
ated with the quasielastic mode of the 1 D Ising chain
induced by ferromagnetic short-range order.
Our scaling analysis in Fig. 8(a) suggests that the

observed divergent behavior of 1=T1 is somewhat weaker
than 1

T1
∼ 1

T e
þΔ=T , perhaps because our experimental

range of T and h⊥ is not deep inside the RC regime,
or possibly because of the influence of additional terms
in the Hamiltonian neglected in the theoretical calcula-
tions. Accordingly, we fit the 1=T1 data in the RC regime
with the simple exponential form, 1=T1 ∝ eþΔ=T , in
Fig. 7(a), ignoring the temperature-dependent prefactor
∼1=T.

2. Quantum critical regime

Here, we have, in imaginary time τ, from (4.106) in
Ref. [6], that

Cðx ¼ 0; τÞ ¼ ZT1=4 GIð0Þ
½2 sinðπTτÞ�1=4 ; ðA3Þ

where GIð0Þ ¼ 0.858714569 and

Z ¼ lim
Δ→0

N2
o

Δ1=4 ; ðA4Þ

the value of Z is a general result when approaching from the
ordered side, valid beyond the nearest-neighbor model.
From Eq. (A3), we have the local susceptibility in

imaginary time,

χðx ¼ 0;ωnÞ ¼
Z

1=T

0

dτeiωnτCðx ¼ 0; τÞ: ðA5Þ

We evaluate the Fourier transform using Eqs. (3.12), (3.22),
and (3.24) of Ref. [41], and we obtain

Imχðx ¼ 0;ωnÞ ¼
ZGIð0Þ

T3=421=4
ffiffiffi
π

p
Γð1=8ÞΓð5=8Þ

× sinh

�
ω

2T

�����Γ
�
1

8
− iω
2πT

�����
2

: ðA6Þ

This gives us

1

T1

¼ jahf j2
Z

T3=4

GIð0ÞΓð1=8Þ
21=4

ffiffiffi
π

p
Γð5=8Þ ¼ 2.13jahf j2

Z

T3=4 : ðA7Þ

In the case of the nearest-neighbor Ising model, Δ ¼
2Jð1 − gÞ and No ¼ ð1 − g2Þ1=8. Accordingly, we obtain
Z ¼ J−1=4 from Eq. (A4), and hence Eq. (A7) leads to
Eq. (4) in the main text.

3. Quantum disordered regime

Here, we expect that 1=T1 diminishes exponentially in
the quantum disordered regime because of the excitation
gap jΔj, and so

1

T1

∝ e−jΔj=T; ðA8Þ

where now Δ < 0. However, there is no explicit compu-
tation in the TFIC establishing this, and the prefactor is
unknown. Accordingly, we fit the 1=T1 data in Fig. 7(a) to
the simple activation form.

APPENDIX B: ANALYSIS OF 1=T1
IN THE QC REGIME

In the previous section, we defined the hyperfine
coupling with Pauli matrices as ahf to maintain consistency
of the notation for the dynamical spin susceptibility defined
in Ref. [6]. To use the standard notations of NMR data
analysis, here we introduce the hyperfine coupling Ahf
between the nuclear spin I and electron spin S through
the hyperfine Hamiltonian Ĥhf ¼ Î · Ahf · Ŝ. That is,
ahf ¼ SAhf . Earlier ESR measurements determined the
anisotropic g tensor of the Co2þ ions in CoNb2O6 as
gðaÞ ¼ 4.3 and gðcÞ ¼ 6.1 by taking the Co pseudospin as
S ¼ 1

2
[18].

Recalling that 1=T1 measured with an external magnetic
field applied along the crystal b axis probes the fluctuating
hyperfine fields along the a and c axes, we may rewrite
Eq. (A7) as

1

T1

¼ 2.13S2
jAðaÞ

hf =ℏj2 þ jAðcÞ
hf =ℏj2

2

ℏ

ðkBJÞ1=4ðkBTÞ3=4
;

ðB1Þ
where we show ℏ and kB explicitly.
Next, we estimate the uniform k ¼ 0 component of the

hyperfine coupling from the NMR frequency shift K [42],

KðαÞ ¼ AðαÞ
hf ðk ¼ 0Þ
gðαÞμB

χðαÞ þ KðαÞ
chem; ðB2Þ

where α ¼ a, b, and c, and KðαÞ
chem is the small temperature-

independent chemical shift. Accordingly,
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AðαÞ
hf ðk ¼ 0Þ

ℏ
¼ γnNAgðαÞμB

dKðαÞ

dχðαÞ
; ðB3Þ

where the 93Nb nuclear gyromagnetic ratio is
γn=2π ¼ 10.407 MHz=Tesla, and NA is Avogadro’s
number.
To determine the only unknown parameter dKðαÞ

dχðαÞ in the

right-hand side of Eq. (B3), we plot KðαÞ in Fig. 10 as a
function of the molar magnetic susceptibility χðαÞ measured
along the corresponding orientations [see Fig. 2(d)],
choosing T as the implicit parameter. From the linear fit
of the K vs χ plot, we estimate the slope as dKðαÞ

dχðαÞ ¼ 0.386,

0.221, and 0.311 for α ¼ a, b, and c, respectively.

Therefore, we arrive at AðaÞ
hf ðk ¼ 0Þ=ℏ ¼ 6.0 × 107 ðs−1Þ

and AðcÞ
hf ðk ¼ 0Þ=ℏ ¼ 7.0 × 107 ðs−1Þ.

Next, we need to relate these results with the fluctuating
hyperfine fields jAðαÞ

hf =ℏj2 in Eq. (B1). The upper bound of
the latter may be easily estimated as

jAðαÞ
hf =ℏj2 ¼ jAðαÞ

hf ðk ¼ 0Þ=ℏj2; ðB4Þ
where we assumed that all Co chains fluctuate coherently
with ferromagnetic interchain correlations. Inserting
Eq. (B4) into Eq. (B1), we obtain 1=T1 ¼ 8.4×
103T−0.75 ðs−1Þ. This theoretical upper bound overesti-
mates the experimental results observed for about 5.2 T
by around 36%.
In reality, the interchain couplings are smaller than J by

an order of magnitude, and they are frustrated. Since we are
concerned with the temperature range T > 0.1J, it is safe to
assume that the fluctuating transferred hyperfine fields
from two nearby Co-O-Co chains are uncorrelated.
Assuming that the magnitudes of these couplings are
comparable [∼AðαÞ

hf ðk ¼ 0Þ=2ℏ] and that their fluctuations
are additive, we arrive at

jAðαÞ
hf =ℏj2 ∼ 2 × jAðαÞ

hf ðk ¼ 0Þ=2ℏj2: ðB5Þ

By inserting Eq. (B5) into Eq. (B1), we estimate
1
T1

¼ 4.2 × 103T−0.75 ðs−1Þ. This underestimates the exper-
imental observation by about 33%.
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