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We introduce a new “universality class” of artificial optical media—photonic hypercrystals. These
hyperbolic metamaterials, with periodic spatial variation of dielectric permittivity on subwavelength scale,
combine the features of optical metamaterials and photonic crystals. In particular, surface waves supported
by a hypercrystal possess the properties of both the optical Tamm states in photonic crystals and
surface-plasmon polaritons at the metal-dielectric interface.
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I. INTRODUCTION

Metamaterials [1] and photonic crystals [2] currently
represent the primary building blocks for novel nano-
photonic devices. With the goal of ultimate control over
the light propagation, an artificial optical material must rely
on either the effect of a subwavelength pattern that changes
the average electromagnetic response of the medium [3,4]
or on Bragg scattering of light due to a periodic spatial
variation that is comparable to the wavelength [5,6].
By virtue of this inherent scale separation, the correspond-
ing metamaterial and photonic crystal concepts are gen-
erally considered mutually exclusive within the same
environment.
The situation is, however, dramatically different in the

world of hyperbolic metamaterials [7–9], where the oppo-
site signs of the dielectric permittivity components in two
orthogonal directions (ϵnϵτ < 0) lead to the hyperbolic
dispersion of TM-polarized propagating waves,

k2τ=ϵn þ k2n=ϵτ ¼ ω2=c2; ð1Þ

with the wave numbers unlimited by the frequency ω. As a
result, a periodic variation in the dielectric permittivity,
regardless of how small its period d is (Fig. 1), will
necessarily cause Bragg scattering of these high-k waves,
leading to the formation of photonic band gaps in both the
wave number and the frequency domains—see Fig. 2.
Interestingly, while photonic crystals formed by hyperbolic
media have been considered earlier [10,11], with the
emphasis on omnidirectional band gaps [10] and Goos-
Hänchen shift [11], these studies generally focused on the
photonic crystal regime d ∼ λ0 and thus avoided the

hypercrystal limit d ≪ λ0, where λ0 is the corresponding
free-space wavelength.
This effect on the wave propagation and dispersion by

phase-space band-gap formation, in what is essentially the
metamaterial limit, allows for an unprecedented degree of
control of light propagation in photonic hypercrystals.
Furthermore, hypercrystals allow one to substantially
reduce the highly detrimental effect of the material loss
in plasmonic devices and systems. While it was realized
that coupling of photons to charges at metal interfaces
allows subdiffraction-limit localization of light that has
revived the field of surface plasmons [12], the subwave-
length confinement is also the regime of the highest
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FIG. 1. A hypercrystal is formed by introducing a periodic
variation in a hyperbolic medium, with the period smaller than the
free-space wavelength d ≪ λ0 but well above the unit cell size of
the hyperbolic (meta)material: d ≫ a. The desired periodic
variation can be achieved by introducing a second medium
(which could be either a metal, or a dielectric, or another
hyperbolic medium with a different dielectric permittivity tensor)
in the design of the composite.
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surface-plasmon propagation loss—as it is the photon-
electron coupling which is the origin of both of these
effects.
Although there is an alternative mechanism of the

optical-surface-state formation due to Bragg reflection in
the band gap of a photonic crystal that is free from high
loss, responsible for the so-called optical Tamm [13–16] or
Shockley [17,18] states [19], it normally does not lead to a
subwavelength localization. However, in a photonic hyper-
crystal where Bragg reflections and associated band gaps
persist into the metamaterial limit (see Fig. 2), the Tamm
mechanism is no longer subject to such limitations. Now, it
can lead to the formation of electromagnetic surface states
with high wave numbers that are localized at the scale
that is much shorter than the free-space wavelength.
Furthermore, with Bragg reflections taking part of the
“load” in light confinement, when compared to the conven-
tional surface-plasmon polaritons at the metal-dielectric
interface, these “hyperplasmons” can show both stronger
localization (larger wave numbers) and lower loss.

II. PHOTONIC HYPERCRYSTALS:
THE CONCEPT

Depending on the relation between the optical wave-
length λ0 and its unit cell size a, an artificial composite

material generally shows two distinct and qualitatively
different regimes for wave propagation and scattering. In
the metamaterial limit a ≪ λ0 [1], the electromagnetic
response of the composite can be described in terms of
its effective permittivity and permeability tensors, whose
elements are defined by the geometry and the composition
of the unit cell [3]. In contrast to this behavior, optical
Bragg scattering in the photonic crystal regime a ≳ λ0 leads
to a nontrivial wave dispersion that can no longer be
described by the averaged refractive index; it also leads to
the formation of the band gaps in the propagating wave
spectrum [2].
However, this separation into two distinct regimes tacitly

assumes that the wave numbers of the propagating modes
supported by the composite are within the same order of
magnitude as the corresponding free-space value. Indeed,
in such case the strong inequality a ≪ λ0 implies that the
phase ka accumulated by the propagating wave across a
single cell of a metamaterial is much smaller than unity, and
the effective medium description of the composite is well
justified [20].
While generally appropriate for most optical materials,

this assumption is violated in hyperbolic media where the
dielectric permittivities in two orthogonal directions (e.g.,
ϵx ¼ ϵy ≡ ϵτ and ϵz ≡ ϵn) have opposite signs, leading to
the hyperbolic dispersion of TM-polarized propagating
waves

k2τ −
�
− ϵτ
ϵn

�
k2n ¼ ϵτ

ω2

c2
ð2Þ

as shown in Fig. 2(a) for the case of semiconductor
hyperbolic metamaterials based on an In0.53Ga0.47As:
Al0.48In0.52As superlattice [9]. Note that the optical hyper-
bolic media can be found in both “artificial” structures
(based, e.g., on doped semiconductors [9], metals [21], and
polar constituents [22]) and in the “natural” form (e.g.,
sapphire [23], bismuth [24–27], triglycine sulfate (TGS)
[28–30], and graphite [31]). With the validity of Eq. (2)
only limited by the unit cell size of the medium a, a
hyperbolic metamaterial generally supports a broad spec-
trum of high-kwaves, leading to the super-singularity in the
photonic density of states [32] and a wide range of related
phenomena—from quantum-electrodynamic effects [33–
35] to enhanced scattering and reduced reflectivity [36].
As a result, a periodic variation introduced in a hyper-

bolic medium, even with the period d ≪ λ0, will lead to
strong Bragg scattering of the high-k propagating waves—
despite the fact that the composite remains within the
formal bounds of the “metamaterial limit.” Note that such
behavior is not observed in either conventional metamate-
rials or in regular photonic crystals. Furthermore, as
opposed to the case of a conventional photonic crystal,
the resulting wave dispersion in hypercrystals shows a
substantially more complex “phase diagram,” with multiple

FIG. 2. The comparison of the effective medium dispersion
of a photonic hypercrystal (a) to the exact solution (b) in the
lossless limit. The hypercrystal unit cell is formed by 250 nm of
semiconductor hyperbolic metamaterial introduced in Ref. [9]
(25% nþ-doped In0.53Ga0.47As with a 5 μm plasma wavelength
and 75% Al0.48In0.52As), followed by a 250-nm dielectric layer of
Al0.48In0.52As.
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allowed and forbidden bands in both frequency and
momentum dimensions (see Fig. 2).
Formally, we define the photonic hypercrystal regime as

the limit

a ≪ d ≪ λ0 ð3Þ

for a photonic crystal, with the period d formed by a (either
natural or artificial) hyperbolic medium with the unit cell
size a (see Fig. 1). With the unit cell size for existing
hyperbolic metamaterials on a scale that ranges from about
10 nm at visible frequencies [21,37,38] to about 100 nm in
mid-IR [9], the ratio λ0=a ∼ 100 allows for a sufficient
“separation of scales” to satisfy Eq. (3). Furthermore, with
the use of natural hyperbolic materials such as sapphire
[23] or bismuth [27], Eq. (3) reduces to simply

d ≪ λ0: ð4Þ

A. Hypercrystal in the lossless limit

To illustrate the new possibilities brought about by the
hypercrystals, compared to regular metamaterials and
photonic crystals, we first consider the limit in which
the effects of the material loss can be neglected. Using the
example of a semiconductor hyperbolic metamaterial based
on an In0.53Ga0.47As: Al0.48In0.52As superlattice from
Ref. [9] and setting the loss to zero, for the “metallic”
(permittivity ϵm) and the “dielectric” (permittivity ϵd)
components of this hyperbolic metamaterial in the mid-
IR frequency range, we find

ϵm ¼ 12.15

�
1 − ω2

p

ω2

�
; ð5Þ

ϵd ¼ 10.23; ð6Þ

with the corresponding dielectric permittivity tensor for the
metamaterial formed by the layers of these media given by

ϵτ ¼ pϵm þ ð1 − pÞϵd; ð7Þ

ϵn ¼
1

p
ϵm
þ 1−p

ϵd

; ð8Þ

where p is the volume fraction of the metallic phase, and
the plasma frequency ωp can be adjusted within the mid-IR
range by the level of doping. Note that the use of the
effective medium theory in Eqs. (7) and (8), corresponding
to the quasistatic approximation ka ≪ 1 [39], limits the
maximum wave number that can be described by this
model to kmax ∼ 1=a.
For the unit cell of the idealized hypercrystal of the

present section, we take a 250-nm-wide layer of such
hyperbolic media with p ¼ 0.25 and the plasma

wavelength of λp ≡ 2πc=ωp ¼ 5 μm (showing the hyper-
bolic response for all frequencies below ωp ≈ 377 ps−1),
followed by 250 nm of the dielectric Al0.48In0.52As.
If applied to the hypercrystal, the effective medium

approximation would return the permittivity tensor with
the dielectric behavior (ϵeffτ , ϵeffn > 0) for 230 ps−1 ≲ ω≲
316 ps−1 and ω≳ 377 ps−1, and the hyperbolic response at
316 ps−1 ≲ ω≲ 377 ps−1 (with ϵeffτ > 0, ϵeffn < 0) and
ω≲ 230 ps−1 (with ϵeffτ < 0, ϵeffn > 0). For the latter band,
this is illustrated in Fig. 2(a), where we plot the frequency
as a function of both in-plane and normal to the layer
components of the propagating wave momentum. Note that
a cross section of this surface in Fig. 2(a) at fixed ω is
indeed a hyperbola.
The effective medium approach, however, does not

adequately describe the propagating waves in the hyper-
crystal—as seen from Fig. 2(b), which shows the exact
solution for this model system. Indeed, as expected from
the qualitative discussion of the previous section, instead
of a single surface [together with its mirror image—see
Fig. 2(a)] we find multiple allowed and prohibited bands in
both the frequency and momentum dimensions.
The formation of these high-k sub-bands represents the

primary difference of the hypercrystal from the regular
photonic crystals. This behavior can be understood, e.g., in
terms of an effective tight-binding model [2,40], where
narrow hyperbolic waveguides that support high-k modes
[41] are “coupled” by either metallic or dielectric barriers—
with different high-k bands evolving from each of the
high-k modes of those waveguides.
While such multiple higher-order band gaps in both

frequency and momentum are clearly seen in the dispersion
diagram of Fig. 2(b), note that they are only observed for
kτ > k0 and therefore are not accessible for light incident
from air on a defect-free surface of the hypercrystal.
However, many optical phenomena—from light scattering
[36] to near-field radiative thermal transport [42–46] to
coherent thermal radiation [47] to spontaneous emission
[33]—are strongly affected by the high-k part of the wave
number spectrum in the system.

B. “Real-world” hypercrystals

The actual practical realizations of the concept of a
hypercrystal are subject to a number of limitations. First,
the finite size of the unit cell forming the hyperbolic
“phase” of the composite sets the maximum accessible
wave number at kmax ∼ 1=a and thus limits the total number
of propagating and forbidden bands. Unless a natural
hyperbolic medium is available for the desired frequency,
even for planar fabrication which so far offers the smallest
controllable size of the unit cell, lowering a to the scale
of about 10 nm is usually at the cost of a substantial
increase of the electron surface scattering and associated
loss. Furthermore, with semiconductor superlattice meta-
materials [9], the reduction of a below 50 nm is only
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accomplished at the expense of lowering the plasma
frequency, as electron quantization in sub-50-nm layers
limits the maximum doping that can be accommodated
before the onset of above-barrier electron transport normal
to the layers.
The consequences of the material loss are even more

severe. Absorption that is generally inevitable in hyperbolic
media eliminates the clear-cut distinction between the
forbidden and propagating bands in the phase space of
the hypercrystal seen in the lossless limit [as, e.g., in
Fig. 2(b)]. Instead, for any frequency ω and in-plane
momentum kτ, a wave in a hypercrystal shows exponential
decay, with the corresponding extinction coefficient origi-
nating primarily from absorption in the formerly propa-
gating bands and mostly from Bragg reflection in the
originally forbidden parts of the phase space. However, a
more careful study of the propagating modes of an
absorbing photonic hypercrystal still uncovers the signa-
tures of the phase-space structure of the loss-free system.
To describe the phase space of a lossy hypercrystal with

axial symmetry (such as, e.g., a layered composite), we
introduce the dimensionless “extinction coefficient”

α≡ Im½kn�d; ð9Þ

where kn is the wave-vector component along the optical
axis of the composite z, so the intensity decays as
IðzÞ ∝ exp ð−2αz=dÞ. In a propagating band, the extinction
coefficient is relatively small and entirely defined by the
material absorption, with α ¼ 0 in the lossless limit. In
contrast, within a band gap, α ¼ Oð1Þ. The propagating
band’s “valleys” and band-gap “ridges” in a 3D plot of the
extinction coefficient vs the wave number kτ and frequency
ω thus allow a straightforward visualization of the phase
space of a hypercrystal.
We now use this approach for a semiconductor super-

lattice hypercrystal. In this example, the single period of the
composite is defined by a 100-nm layer of an nþ-doped
semiconductor In0.53Ga0.47As with the plasma wavelength
λp ¼ 5 μm, followed by a 400-nm-thick semiconductor
hyperbolic metamaterial—see Fig. 3. Taking into account
the material loss in such heavily doped In0.53Ga0.47As, the
dielectric permittivity of this semiconductor can be
expressed as [9]

ϵ ¼ 12.15

�
1 − ω2

p

ω2 þ iω=τ

�
; ð10Þ

with the relaxation time τ ≈ 0.16 ps and the plasma
frequency ωp ¼ 2πc=λp.
In this example (see Fig. 4), the unit cell of the hyperbolic

metamaterial consists of interleaving 50-nm-wide layers of
the dielectric Al0.48In0.52As [with the permittivity in the
mid-IR range approximately equal to 10.23 [9]—see also
Eq. (6)] and an nþ-doped In0.53Ga0.47As semiconductor
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FIG. 3. The dielectric permittivity tensor of an
nþ-In0.53Ga0.47As Al0.48In0.52As semiconductor superlattice
metamaterial, with a 50% volume fraction of the doped semi-
conductor with a plasma wavelength of 5 μm. Blue and red lines
correspond to the permittivities parallel and perpendicular to the
normal to the layers. Real and imaginary parts of the permittivity
are represented, respectively, by solid and dotted lines. For the
metamaterial unit cell size of a ∼ 100 nm in the mid-IR fre-
quency range, this effective medium description is valid as long
as k=k0 ≪ λ0=a≃ 100 (see also Fig. 5).

FIG. 4. The dimensionless extinction coefficient Im½kn�d vs
normalized in-plane momentum (kτ=k0) and frequency ω, for
a semiconductor In0.53Ga0.47As Al0.48In0.52As=In0.53Ga0.47As
hypercrystal, calculated in the lossless limit (a) and for the actual
material losses (b). The material parameters for this calculation
are described in the caption of Fig. 3 and in the main text.
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(same as in the “isotropic” part of the hypercrystal). The
components of the corresponding dielectric permittivity
tensor of this semiconductor hyperbolic metamaterial are
shown in Fig. 3. While the effective medium theory in
Eqs. (7) and (8) clearly leads to a hyperbolic response of this
composite, one must ensure that the finite size of the unit
cell in the system does not lead to substantial deviations for
the wave numbers of interest. To address this issue, in Fig. 5
we compare the isofrequency curves for this composite,
calculated with (blue lines) and without (red curves)
introducing the effective medium approximation. Note that
while for the higher values of the tangential momentum
kτ > 20 k0 the actual value of kn is no longer nearly
indistinguishable from the results of the approximation in
Eqs. (7) and (8), the overall behavior of the isofrequency
diagram follows the predictions of the effective medium
theory.
The presence of the actual material loss results in a

nonzero extinction coefficient in the propagation bands,
leading to a smaller “contrast” between the propagating and
forbidden bands—see Fig. 4(b). However, the extinction
coefficient still clearly shows the general “ridge-valley”
pattern of the ideal lossless hypercrystal seen in Fig. 4(a).
As a result, actual material loss does not fully suppress the
hypercrystal behavior.
Note that in the higher-order propagation bands, the

typical values of the dimensionless extinction coefficient
(9) can substantially exceed unity. As a result, a propagat-
ing wave from any of such bands will be totally absorbed at
a distance that is barely a small fraction of the free-space
wavelength. Therefore, unless one can substantially
reduce the effective loss in the hypercrystal, a practical

application of such volume-propagating waves will be very
challenging.
Of all the existing realizations of hyperbolic media

at optical frequencies, the typical “figure-of-merit”
Re½ϵ�=Im½ϵ� for optical hyperbolic media based on the
existing plasmonic and polaritonic materials ranges from
unity (e.g., graphene-based hyperbolic metamaterials [48]
and graphite [31]) to about 10 (semiconductor [9] and
silver-based layered hyperbolic media [21] and sapphire
[49]), [50]—with the only exceptions contributed by the
nanowire composites [51] where the relatively low volume
fraction of the metal (about 10%) results in a proportionally
lower loss [52,53]. It is this type of hyperbolic media that
holds the most promise for practical applications of the
concept of the hypercrystal [54].
However, in addition to the structured spectrum of the

“bulk” propagating modes, photonic hypercrystals also
support novel surface waves that combine the features of
the regular surface plasmons with those of optical Tamm
states. Because of the contribution of Bragg scattering to
their formation, even with the actual losses in planar
hypercrystals, these surface waves show both larger wave
numbers and lower loss than their regular surface-plasmon
counterparts. It is this behavior of the surface states in
photonic hypercrystals that is the main focus of the
present paper.

III. SURFACE WAVES IN PHOTONIC
HYPERCRYSTALS

We consider TM-polarized waves in a planar hyper-
crystal, formed by layers of an isotropic material with the
permittivity ϵi and a uniaxial hyperbolic medium with the
permittivity tensor

ϵ ¼

0
B@

ϵτ 0 0

0 ϵτ 0

0 0 ϵn

1
CA;

with the corresponding thicknesses di and dh, respectively.
Note that at this point we impose no restrictions on the
dielectric permittivity ϵi of the isotropic component of the
hypercrystal—which can be either dielectric (Re½ϵi� > 0) or
metallic/polaritonic (Re½ϵi� < 0); the corresponding hyper-
crystals will be referred to, respectively, as “dielectric” and
“metallic.” In principle, the hypercrystal can also be formed
by two distinct anisotropic components, with essentially
similar resulting behavior. On the other hand, the extraor-
dinary (TM) polarization here is essential—as TE (or
ordinary) waves are only sensitive to the in-plane permit-
tivity ϵτ and generally do not show hyperbolic behavior.
To describe the surface states in the planar hypercrystal,

we assume that it occupies the half-space z > 0 and is
terminated at z ¼ 0 by the interface with the dielectric
mediumwith permittivity ϵd. This model is exact for natural

20 10 0 10 20
20

10

0

10

20

k k0

kn

k0

FIG. 5. The isofrequency plot of the semiconductor hyperbolic
metamaterial, used in the hypercrystal from Fig. 4, for the
free-space wavelength λ ¼ 10 μm (or equivalently the frequency
ω ¼ 1000 cm−1). The metamaterial unit cell is formed by
50-nm-wide layers of insulating Al0.48In0.52As and nþ-doped
In0.53Ga0.47As (with the plasma frequency λp ¼ 5 μm). Red and
blue colors correspond to the exact solution and the effective
medium approximation, respectively. Solid curves represent the
real part of the normal to the layer component of the wave vector
kn, while the dotted lines show Im½kn�.
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hyperbolic media and assumes that dh ≫ a in the case of
the hypercrystal unit cell formed from a hyperbolic
metamaterial.

A. General theory for planar hypercrystals

The calculation of the surface waves in such systems is
straightforward, extending the standard procedure devel-
oped for 1D photonic crystals formed by isotropic compo-
nents [55] to the more general case of uniaxial anisotropy.
For the TM polarization, we obtain

ϵ1
ϵd

κd
κ1

¼
1
λ − T11 − T12

1
λ − T11 þ T12

; ð11Þ

where k0 ≡ ω=c is the free-space wave number, κd is the
field decay rate in the dielectric at z < 0,

κd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2τ − ϵdk20

q
; ð12Þ

and the permittivity ϵ1 and the decay constant κ1 corre-
spond to the parameters of the “terminating” layer of the
hypercrystal that interfaces the surrounding medium: If the
terminating layer is isotropic, ϵ1 ¼ ϵi and κ1 ¼ κi, while for
the hyperbolic terminating layer, ϵ1 ¼ ϵτ and κ1 ¼ −ikh.
Here, the wave number in the hyperbolic medium kh and
the field decay rate in the isotropic part of the hypercrystal
unit cell κi are given by

kh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵτk20 − ðϵτ=ϵnÞk2τ

q
; κi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2τ − ϵik20

q
: ð13Þ

T11 and T12 are the components of the 2 × 2 transfer matrix

T ≡
�
T11 T12

T21 T22

�

for the unit cell of the hypercrystal [55], and λ is its
eigenvalue with the absolute value larger than 1.
Since the determinant of a unit cell transfer matrix

in a periodic system (even in the presence of material
absorption) is equal to 1,

det½T�≡ T11T22 − T12T21 ¼ 1; ð14Þ

Eq. (11) can also be equivalently expressed as

− ϵ1
ϵd

κd
κ1

¼
1
λ − T22 − T21

1
λ − T22 þ T21

: ð15Þ

Note that the system only supports surface states if the
trace of the T matrix

jTr½T�j≡ jT11 þ T22j > 2; ð16Þ

which for det½T� ¼ 1 is a necessary and sufficient condition
for the existence of an eigenvalue with the modulus jλj > 1.
The physical meaning of this requirement can be uncovered
in the lossless limit, where Eq. (16) implies that the
surface states in the hypercrystal, just as the regular
optical Tamm states, are confined to the band gaps of
the volume-propagating modes.
From Eq. (11), we obtain

1

λ
¼ T11 þ T12

ϵdκ1 þ ϵ1κd
ϵdκ1 − ϵ1κd

: ð17Þ

For an infinite hypercrystal, the transfer matrix T that, by
definition, relates the amplitudes of the “left”-and
“right”-propagating waves in different unit cells, can be
calculated either in the hyperbolic or in the isotropic
material components. Equations (11) and (15), however,
remove this uncertainly, as the T-matrix components there
must be calculated in the medium that forms the “terminal
layer” of the hypercrystal, which is in direct contact with
the surrounding medium.
When the hypercrystal is terminated at the hyperbolic

layer (see Fig. 6), using a a straightforward generalization
of the approach of Ref. [55] to the case of anisotropic
material components, for the unit cell transfer matrix, we
obtain

T11 ¼
�
cosh ðκidiÞ þ

i
2

�
kh
κi

ϵi
ϵτ

− κi
kh

ϵτ
ϵi

�
sinh ðκidiÞ

�

× exp ðikhdhÞ; ð18Þ

T12 ¼ −
i
2

�
kh
κi

ϵi
ϵτ

þ κi
kh

ϵτ
ϵi

�
sinh ðκidiÞ exp ð−ikhdhÞ; ð19Þ

FIG. 6. The interface of a “dielectric” hypercrystal with air,
with the former “terminated” at the hyperbolic layer. The letters
in quotation marks represent the subscripts used in Sec. III for the
corresponding materials.
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T21 ¼
i
2

�
kh
κi

ϵi
ϵτ

þ κi
kh

ϵτ
ϵi

�
sinh ðκidiÞ exp ðikhdhÞ; ð20Þ

T22 ¼
�
cosh ðκidiÞ − i

2

�
kh
κi

ϵi
ϵτ

− κi
kh

ϵτ
ϵi

�
sinh ðκidiÞ

�

× exp ð−ikhdhÞ: ð21Þ

On the other hand, when it is the isotropic layer that forms
the surface of the hypercrystal (see, e.g., Fig. 7),

T11 ¼
�
cos ðkhdhÞ þ

1

2

�
kh
κi

ϵi
ϵτ

− κi
kh

ϵτ
ϵi

�
sin ðkhdhÞ

�

× exp ð−κidiÞ; ð22Þ

T12 ¼
1

2

�
kh
κi

ϵi
ϵτ

þ κi
kh

ϵτ
ϵi

�
sin ðkhdhÞ exp ðκidiÞ; ð23Þ

T21 ¼ −
1

2

�
kh
κi

ϵi
ϵτ

þ κi
kh

ϵτ
ϵi

�
sin ðkhdhÞ exp ð−κidiÞ; ð24Þ

T22 ¼
�
cos ðkhdhÞ − 1

2

�
kh
κi

ϵi
ϵτ

− κi
kh

ϵτ
ϵi

�
sin ðkhdhÞ

�

× exp ðκidiÞ: ð25Þ

Note that in both cases, the trace of the transfer
matrix (which is uniquely defined by the corresponding
eigenvalues)

Tr½T� ¼ 2 cos ðkhdhÞ cosh ðκidiÞ

þ
�
κi
kh

ϵτ
ϵi
− kh
κi

ϵi
ϵτ

�
sin ðkhdhÞ sinh ðκidiÞ ð26Þ

yields the normal to the layer component of the wave
number kn:

Tr½T� ¼ cos ½knðdi þ dhÞ�: ð27Þ

Substituting Eqs. (17)–(25) into Eq. (15), we find

khϵτðϵ2dκ2i −ϵ2i κ
2
dÞ

tanðkhdhÞ
−κiϵiðϵ2τ κ2dþϵ2dk

2
hÞ

tanhðκidiÞ
¼�κdϵdðϵ2τ κ2i þϵ2i k

2
hÞ:

ð28Þ

Here, the positive sign in the right-hand side of Eq. (28)
corresponds to a hypercrystal where the “last” layer is
isotropic, while the negative sign describes the case of the
interface formed by the hyperbolic phase of the composite.
Equation (28) can be considered as the fundamental

equation for the surface states in a hypercrystal. However,
while it no longer explicitly depends on the eigenvalue λ,
this equation is still limited to the case of jλj > 1 and should
therefore be considered together with the inequality (16).
Note that, while the actual dispersion of the surface state
does depend on which of the layers forming the hyper-
crystal interfaces with the surrounding medium, the con-
dition jλj > 1 does not. In other words, if a hypercrystal
supports the surface wave for a given frequency when the
terminating layer is isotropic, it will also support the
corresponding surface wave when the terminating layer
is hyperbolic, and vice versa.
In the lossless limit, the requirement of jλj > 1 confines

the surface waves to the band gaps of the hypercrystal, just
as in the case of the conventional Tamm states in regular
photonic crystals. However, in contrast to the latter, the
hypercrystals support band gaps at kτ ≫ k0, which leads to
the immediate conclusion that, aside from the zero-order
mode, the surface states in hypercrystals generally possess
high wave numbers. By continuity, this conclusion should
remain valid even in the presence of material loss.
Mathematically, this is easily seen from Eq. (28), which
for high-order modes, implies that κd ¼ Oð1Þ, leading
to kτ ∼ 1=d ≫ k0.
In the limit kτ ≫ k0 ≡ ω=c, we find

Ah

tan ðkτd�Þ
¼ �1þ Ai

tanh ðkτdiÞ
; ð29Þ

where

d� ≡ dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−ϵτ=ϵn

p
ð30Þ

and the coefficients Ah and Ai are defined by the
permittivites ϵτ, ϵn, ϵi, and ϵd:

Ah ¼
ffiffiffiffiffiffiffiffiffiffiffiffi−ϵτϵnp
ϵd

ϵ2i − ϵ2d
ϵ2i − ϵτϵn

; ð31Þ

Ai ¼
ϵi
ϵd

ϵ2d − ϵτϵn
ϵ2i − ϵτϵn

: ð32Þ

Hyperbolic Medium Metal (  < 0)Dielectric (  > 0)

0                                                 z

FIG. 7. The interface of a “metallic” hypercrystal and a
dielectric. The hypercrystal is terminated at the metallic layer.
The symbols in quotation marks show the corresponding sub-
scripts in Sec. III.
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Equation (29) should be solved within the bounds set by the
inequality (16), which in this limit (kτ ≫ k0), reduces to

���� cos ðkτd�Þ cosh ðkτdiÞ þ sin ðkτd�Þ sinh ðkτdiÞ

×
1

2

� ffiffiffiffiffiffiffiffiffi
− ϵn
ϵτ

r
ϵτ
ϵi
−

ffiffiffiffiffiffiffiffiffi
− ϵτ
ϵn

r
ϵi
ϵτ

����� > 1. ð33Þ

Note that, depending on the nature of the surrounding
material and material composition, as well as the structural
characteristics of the hypercrystal, the resulting surface
states can be both right- and left-handed (corresponding to
forward- and backward-propagating modes); in the follow-
ing sections, we will present the examples of both types
of behavior. This is similar to the situation found in
“traditional” photonic crystals where surface modes can
be either forward or backward [56].
While the general theory of the present subsection can be

used for both “dielectric” (with the isotropic phase having
the dielectric response: Re½ϵi� > 0, as in Fig. 6) and
“metallic” (when the permittivity of the isotropic compo-
nent is negative: Re½ϵi� < 0; see, e.g., Fig. 7) hypercrystals,
the qualitative difference in the electromagnetic response of
the isotropic phase has a profound effect on the surface
states in these two classes of composites. This will be
discussed in detail in the next two sections.

B. Dielectric hypercrystals

As an example of a dielectric hypercrystal, we consider a
composite formed by layers of silicon as the isotropic
dielectric, and sapphire as the natural hyperbolic medium.
Note that, in contrast to the composites that use metama-
terial realizations of the hyperbolic media, this hypercrystal
is not subject to the lower limit of the inequality (3) [see
also Eq. (4) and the discussion that immediately precedes
it) and therefore offers an essentially unlimited range of
supported wave numbers, up to the inverse atomic size.
Because of a strong anisotropy of its crystal structure and

high-quality optical phonon resonances, monocrystalline
sapphire shows hyperbolic behavior in several frequency
bands in the mid-IR range. This is illustrated in Fig. 8(a)
which summarizes the experimental data for the dielectric
permittivity of sapphire from Ref. [23].
In particular, the range around the frequency of

500 cm−1 (corresponding to the free-space wavelength
of 20 μm), shown in Fig. 8(b), supports a low-loss hyper-
bolic band with negative permittivity along the symmetry
axis of the crystal [red line in Fig. 8(b)] and positive
permittivity in the plane perpendicular to the symmetry axis
[blue curve in Fig. 8(b)] for 485 cm−1 < ω < 510 cm−1.
Silicon, on the other hand, is transparent in this fre-

quency range, with the dielectric permittivity ϵSi ≈ 11.6
[57]. Since this exceeds the magnitudes of both compo-
nents of the sapphire permittivity tensor, within the

effective medium approximation, the silicon-sapphire
hypercrystal with equal volume fractions of both compo-
nents is characterized by a dielectric permittivity tensor
where all diagonal components have positive real parts.
With the thicknesses of the silicon and sapphire layers

di ¼ dh ¼ 1 μm forming the unit cell that is an order of
magnitude smaller than the free-space wavelength of
20 μm (corresponding to ω ¼ 500 cm−1), one would
naively expect the hypercrystal to behave as an effective
anisotropic dielectric that does not support any high-k
surface-plasmonlike states. The actual presence of such
surface waves in this system is yet another example of the
failure of the effective medium approximation in photonic
hypercrystals.
For the interface of air and a silicon-sapphire hyper-

crystal with dh ¼ di ¼ 1 μm, with the sapphire symmetry
axis normal to its layers, Eqs. (28) and (16) yield a
sequence of surface states. In Fig. 9, we show the first
three of these, at the frequency ω ¼ 500 cm−1. An inter-
esting feature of these waves is that they are “left-handed,”
with the average energy flow along the surface opposite to
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     (a)
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FIG. 8. Panel (a): the dielectric permittivity tensor of sapphire
monocrystal in the Restrahlen band, from the measurements of
Ref. [23]. Panel (b) shows the range near the free-space wave-
length of 20 μm that supports a low-loss hyperbolic band. Red
and blue lines correspond, respectively, to the permittivities
parallel and perpendicular to the C axis of the sapphire crystal.
Real and imaginary parts of the permittivity are represented by
solid and dotted lines.
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the direction of the in-plane momentum kτ. This, however,
is not surprising since—just as the free-electron wave-
functions in a solid can be treated as superpositions of the
localized atomic eigenstates [40]—the electromagnetic
waves in a hypercrystal are formed by the propagating
modes of coupled hyperbolic waveguides, which for
Re½ϵτ� > 0, Re½ϵn� < 0 (corresponding to this hyperbolic
band in sapphire), are known to be left-handed [41].
Figures 10 and 11 show the corresponding dispersion

diagrams for the surface states in the silicon-sapphire
hypercrystal, for the whole hyperbolic band in sapphire
that is near the free-space wavelength of 20 μm.
In Fig. 10, we plot ωðkτÞ for the silicon-sapphire

hypercrystal surface waves when the material loss is
neglected. Note that all these modes are backwards-
propagating (or left-handed) since the group velocity
vg ≡ ∂ω=∂kτ is negative.
The lossless limit of Fig. 10 also shows the divergence

kτ → ∞ as the (positive) in-plane permittivity in the
hyperbolic layers ϵτ approaches zero. Indeed, as follows
from Eqs. (29)–(32), for a dielectric hypercrystal in the
limit ϵτ → 0, we find the “resonance”

kτ ¼
π

dh

ffiffiffiffiffiffiffiffiffi
− ϵn
ϵτ

r
m → ∞; ð34Þ

where m is an integer. Physically, this limit corresponds to
most of the energy of the surface state localized in the first
hyperbolic layer near the interface. This divergence is,
however, removed when the actual material losses are taken
into account—see Fig. 11.

The comparison of Figs. 10 and 11 also shows that, away
from the ϵτ → 0 resonance point at ω ≈ 481 cm−1 (see
Fig. 8), the material loss in sapphire does not have a strong
effect on the surface states, which show both the large wave
numbers and relatively long propagation distances
(inversely proportional to the imaginary part of the wave
number shown in Fig. 11 by dotted lines).
This behavior is further illustrated in Fig. 12, where

we plot the standard “figure of merit” for surface states,
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FIG. 9. The profiles of the tangential electric field for the first
three surface states at the interface of air and a silicon-sapphire
hypercrystal. The unit cell of the hypercrystal is formed by 1-μm-
wide layers of silicon and sapphire, with the C axis of sapphire
normal to the plane of the layers. The frequency is 500 cm−1. The
dark-gray regions correspond to sapphire, and light-gray areas
represent silicon.
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FIG. 10. The wave dispersion ωðkτÞ for the surface states at the
interface of a silicon-sapphire hypercrystal with air in the zero
loss limit; the unit cell of the composite is formed by silicon and
sapphire layers of equal widths, dh ¼ di ¼ 1 μm. Note that for all
modes, (i) kτ > k0 (as the coordinate axis origin corresponds to
kτ=k0 ¼ 1), so that they are outside the free-space “light cone”
kτ < k0 and therefore cannot directly couple to the air, and (ii) the
group velocity vg < 0.
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FIG. 11. The dispersion diagrams for the first five surface
waves at the interface of air and the silicon-sapphire hypercrystal
(same as in Figs. 9 and (10)), with the actual loss. The solid and
dashed lines correspond, respectively, to the real and imaginary
parts of the in-plane momentum kτ.
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FOM ¼ jRe½kτ�=Im½kτ�j, which describes the propagation
distance of the wave vs the real part of the dimensionless in-
plane wave number kτ=k0. In contrast to the situation with
the regular surface plasmons, where large wave numbers
are achieved at the expense of reduced propagation distance
and vice versa, Fig. 12 demonstrates that surface waves in a
hypercrystal allow for both long propagation distances
(FOM ∼ 10) and high wave numbers (kτ ∼ 50k0) at the
same time.

C. Metallic hypercrystals

As an example of a “metallic” hypercrystal, we consider
the composite formed by semiconductor hyperbolic meta-
material and a doped semiconductor—the material system
that we have already used in describing the general concept
of the hypercrystal (see, e.g., Fig. 4). While also designed
for the mid-IR range, just as the silicon-sapphire hyper-
crystal described earlier, the semiconductor aluminum-
indium-gallium-arsenide “platform” offers the capability
of growing multilayer composites with atomic-level pre-
cision, leading to high-quality hypercrystals. This is par-
ticularly important for high-wave-number states, which by
their very nature, are more sensitive to short-range disorder.
The unit cell of the hypercrystal described in the present

section consists of a 1.9-μm-wide layer of hyperbolic
semiconductor metamaterial, followed by 100 nm of an
nþ-doped In0.53Ga0.47As semiconductor with a plasma
frequency of 5 μm. The semiconductor hyperbolic meta-
material used in this example corresponds to the well-
studied system [9] of interleaving layers of the dielectric
Al0.48In0.52As and nþ-doped In0.53Ga0.47As semiconductor.

Note that both the hyperbolic and the isotropic parts of the
hypercrystal use the same “metallic” component, which
would greatly simplify the fabrication of such composites.
As expected, this system supports a sequence of distinct

surface states (note the difference from the surface-plasmon
polaritons in metals and surface waves in hyperbolic media,
where the system supports a single surface state). In
Fig. 13, we plot the first three solutions for the surface
states at the interface of the semiconductor hypercrystal and
dielectric Al0.48In0.52As. Note that in this example,
vg ≡ ∂ω=∂kτ > 0, so these modes are forward-propagating
(or right-handed).
Aside from the zeroth-order mode whose dispersion is

nearly identical to the regular surface plasmon on the
interface between the doped semiconductor and the exter-
nal dielectric, the surface waves supported by the system
have frequencies approaching the lower-band bounds in
the spectrum of the bulk-propagating modes of the
hypercrystal.
The presence of the actual material loss limits the

maximum values of the surface-state wave numbers while
at the same time extending their existence to frequencies
beyond the maximum values from the lossless case—see
Fig. 14. This is exactly what is expected for surface states in
plasmonic systems. However, compared to the regular
surface plasmons, here we find a dramatic increase of
the maximum allowed momentum.
The limits on the wave numbers and the propagation

distance of the surface waves in hypercrystals are further
illustrated in Fig. 15, where we plot the standard figure of
merit [58] Re½k�=Im½k� proportional to the propagation
distance in units of the actual wavelength vs the
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FIG. 12. The figure of merit, FOM ¼ −Re½kτ�=Im½kτ�, as a
function of the real part of the in-plane momentum kτ for the
silicon-sapphire hypercrystal and air interface. Note that as the
group velocity for these modes vg ≡ ∂ω=∂kτ < 0 (see Fig. 10),
the surface waves in this system are left-handed (with the energy
flow along the surface opposite to the in-plane momentum) so
that Im½kτ� < 0, thus the negative sign in the figure of merit.
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FIG. 13. The surface states at the interface of InGaAs:AlInAs
semiconductor-based hypercrystal and dielectric (Al0.48In0.52As),
in the lossless limit. Gray areas correspond to the volume-
propagating bands of the hypercrystal. The color code represents
surface states of zero (green), one (red), and two (blue) orders.
The unit cell of the hypercrystal is formed by 1.9-μm-thick
semiconductor hyperbolic metamaterial, and a 100-nm-wide
layer of nþ-doped In0.53Ga0.47As (with a plasma wavelength
of 5 μm). The yellow band marks the light cone of the dielectric
covering the hypercrystal.
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confinement/wavelength compression factor kτ=k0. There,
the first- and second-order modes (red and blue curves,
respectively) are compared to the regular surface plasmon
(black line) at the interface of the same materials as those
forming the hypercrystal (doped InGaAs as the “metal” and
AlInAs as the dielectric). Note that, with the same material
loss, these “hyperplasmons” show more than an order-of-
magnitude improvement in propagation distance at the

same value of kτ, and more than a factor of 3 enhancement
of the maximum accessible wave number.

IV. CONCLUSIONS

The properties of electromagnetic surface waves
in hypercrystals make these artificial media an ideal
“playground” for what so far has been called the sur-
face-plasmon physics. With enhancement in both the
propagation distance and in the wave numbers, the use
of the hyperplasmons introduced in the present work would
lead to substantial enhancements in all possible applica-
tions in this field—from near-field imaging and super-
resolution to surface-enhanced Raman spectroscopy and
surface-plasmon resonance sensing and detection.
Furthermore, the photonic hypercrystal, the unifying

concept, until recently, of mutually exclusive limits of
metamaterials and photonic crystals, dramatically extends
the accessible “phase space” in electromagnetic material
response and therefore has the potential to find many other
applications in nanophotonics. While the hypercrystal
represents an extra level in the device complexity, its
fabrication does not require anything beyond the standard
methods used in the metamaterial community [1,9].
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