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We provide general sufficient conditions for the efficient classical simulation of quantum-optics
experiments that involve inputting states to a quantum process and making measurements at the output. The
first condition is based on the negativity of phase-space quasiprobability distributions (PQDs) of the output
state of the process and the output measurements; the second one is based on the negativity of PQDs
of the input states, the output measurements, and the transition function associated with the process.
We show that these conditions provide useful practical tools for investigating the effects of imperfections in
implementations of boson sampling. In particular, we apply our formalism to boson-sampling experiments
that use single-photon or spontaneous-parametric-down-conversion sources and on-off photodetectors.
Considering simple models for loss and noise, we show that above some threshold for the probability
of random counts in the photodetectors, these boson-sampling experiments are classically simulatable.
We identify mode mismatching as the major source of error contributing to random counts and suggest that
this is the chief challenge for implementations of boson sampling of interesting size.
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I. INTRODUCTION

It is generally believed that quantum computers can
perform certain tasks faster than their classical counter-
parts. Identifying the resource that enables this speedup
is of particular interest in quantum information science.
Attempts to identify the elusive quantum feature are
generally back-door attacks, studying not what is essential
for speedup, but rather what is lacking in quantum circuits
that can be efficiently simulated classically. A promising
candidate resource comes from the result that, in general,
there is no quantum speedup for circuits whose initial states
and operations have non-negative Wigner functions [1–3].
This suggests that negativity of the Wigner function [4],
which can also be viewed as quantum interference [5], is a
necessary resource for quantum speedup.
Of particular interest are quantum-optical models of

computation that seem achievable in the near future. There
has been considerable interest in boson sampling [6] as an
intermediate model of quantum computation that, despite
its simple physical implementation, is believed to be

classically hard. In this model, N single photons are
injected into N ports of an M-port (M ≫ N), lossless,
passive linear-optical network (LON). (The linear-optical
networks considered in the context of boson sampling and
within this paper are passive; i.e., they contain no active
elements that generate photons.) The remaining M − N
input ports receive vacuum states. Using on-off photo-
detectors at the output of the network, one samples from the
output photon-counting probability distribution. This out-
put distribution, in general, is proportional to the squared
modulus of the permanent of a complex matrix. Computing
permanents is a difficult problem, known to be #P hard
in complexity theory [7,8]. In their original proposal,
Aaronson and Arkhipov (AA) provided strong evidence
that sampling from the output distribution cannot be
simulated efficiently classically [6], and this has come to
be known as the boson-sampling problem.
Subsequent studies showed that there are other product

input states for which sampling from the output probability
distribution is classically hard [9–12]. This gives rise to
questions about the classes of input states andmeasurements
for which sampling the output distribution is classically
intractable. Given the well-developed theory of phase-space
quasiprobability distributions (PQDs) for bosonic states and
measurements, an inevitable question is whether negativity
of such PQDs is required for classical intractability of the
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sampling problem. In addition, a question of both funda-
mental and practical importance concerns the effect of
imperfections on the classical intractability of sampling
problems. There have been various investigations of the
effect on boson sampling of imperfections in the LON
[13–16] and of mode mismatching [17].
The present paper makes two contributions to this

discussion. The first, developed in Sec. II, is to formulate
two sufficient conditions for efficient classical simulation
of generic quantum-optics experiments: M bosonic modes
prepared in an arbitrary bosonic state undergo an M-mode
(trace-preserving) quantum process; one generates samples
by making a measurement on the M output modes (see
Fig. 1). The first condition is based on expressing the
probability distribution of the measurement outcomes in
terms of a PQD for the output state of the process and PQDs
of the elements of the Positive-Operator-Valued Measure
(POVM) that describe the output measurement. If the PQD
of the output state can be efficiently computed and if for
some operator orderings all the PQDs are non-negative,
then efficient classical simulation of sampling is possible.
Our second condition generalizes a previous no-go theorem
[2], which was given in terms of the Wigner function, and it
is particularly useful when one cannot efficiently compute
the PQD of the output state. For this condition, we derive a
relation that decomposes the output probability distribution
into three parts: a PQD for the phase-space complex
amplitudes of the input state; a transition function asso-
ciated with the quantum process, which is a conditional
PQD for the output complex amplitudes of the process
given the input complex amplitudes; and PQDs of the
measurement POVM elements. If specific operator order-
ings exist such that all these PQDs—input, transition,
and output—are efficiently describable and non-negative,
sampling from the output probability distribution can
be efficiently simulated classically. These conditions show
that negativity is a necessary resource for a generic
quantum-optics experiment not to be efficiently simulat-
able; the result includes boson sampling as the special case

where the quantum process is a LON. We emphasize that
efficient classical simulation might still be possible using
other methods even if our conditions are not satisfied.
Our second contribution, developed in Sec. III, is to

apply the results of the first one to investigate the effects of
imperfections on implementations of boson sampling that
use single-photon states [6] or two-mode squeezed-vacuum
states [9] as inputs and photodetection at the output. The
imperfections we consider are loss and mode mismatching
at the input to and within the LON and subunity efficiency
and random counts in the photodetectors. Considering
simple models for these errors, we find necessary and
sufficient conditions for the relevant PQDs to be non-
negative and, thus, for such boson-sampling implementa-
tions to be efficiently simulated classically using these
methods. These conditions say that an experiment can be
classically simulated when the probability of random
counts per photodetector exceeds some threshold in the
experiment.
The various sources of error we consider are not

completely independent. The random counts at the photo-
detectors include both intrinsic dark counts and counts due
to mode-mismatched photons, i.e., nonoverlapping parts of
photon wave packets. These mode-mismatched photons are
lost to the interference that gives rise to the desired output
photocount distribution. They are part of the losses within
the apparatus, but they can make their way through the
LON to the photodetectors and be counted within the
spatiotemporal windows of the detectors. They thus con-
tribute essentially random counts within the photodetectors.
As we discuss in Secs. III B and III C, our conditions for

classical simulatability are not a challenge for situations
with practical losses and high-quality photodetectors,
if the only source of random counts is the intrinsic dark
counts in the detectors. The chief challenge for boson
sampling, we believe, comes when a substantial number
of mode-mismatched photons reach the detectors and are
counted as random counts. A good, but not exact, rule
of thumb is that our methods can classically simulate a
boson-sampling experiment when the number of mode-
mismatched photons reaching the photodetectors exceeds
the number of mode-matched photons. The analysis in
Secs. III B and III C suggests that this is an important
challenge for implementations of boson sampling of inte-
resting size, i.e., when the size of the system is sufficiently
large to represent a challenge for a classical computer to
sample. The paper concludes with a discussion of out-
standing issues in Sec. IV.

II. SIMULATION OF GENERIC
SAMPLING PROBLEMS

A. Generic quantum-optics sampling problem

We consider the generic quantum-optics sampling prob-
lem depicted in Fig. 1:M input bosonic modes, with overall

FIG. 1. Generic quantum-optics sampling problem: The input
state ρin is processed through an M-mode quantum process
described by quantum operation E, producing the output state
ρout ¼ EðρinÞ; an output probability distribution pðnÞ¼Tr½ρoutΠn�
is sampled by measuring a POVM fΠng.
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density operator ρin, traverse a quantum process described
by a (trace-preserving) quantum operation E, leading to the
output state ρout ¼ EðρinÞ; at the output, one measures the
M modes, thus sampling from a probability distribution

pðnÞ ¼ Tr½ρoutΠn�; ð2:1Þ

where POVM elements Πn, with n denoting the joint
outcome, characterize the measurement. The POVM sat-
isfies a completeness relation,

P
nΠn ¼ I , with I denoting

the identity operator in the M-mode Fock space. The
quantum operation E is a linear, trace-preserving, com-
pletely positive map from the set of all density operators
associated with a quantum system to itself. In general,
such a quantum operation describes the system dynamics
associated with a joint unitary transformation on the system
and an environment and arises formally from tracing out
the environment [18].
The question is whether sampling from the output

probability distribution (2.1) can be efficiently simulated
on a classical computer. If such classical simulation is
possible, then using Stockmeyer’s approximate counting
algorithm [19], one can approximate the output probability
to within a multiplicative error in BPPNP, which is con-
tained in the third level of the polynomial hierarchy; ~pðnÞ
approximates pðnÞ to within a multiplicative factor g
if pðnÞ=g ≤ ~pðnÞ ≤ pðnÞg.
Ideal boson sampling is a special case of this general

problem, for which the input state is a multimode Fock
state with N single photons, the quantum process is a
lossless LON described by an M ×M unitary matrix U
withM ≫ N, and photon-counting measurements are made
on each output mode. The output probabilities, in general,
are proportional to the squared modulus of permanents of
complex matrices, which are, in the likely event of single-
photon detections, submatrices of U [20]. Computing
permanents is a difficult problem, known to be #P hard
[7,8], and in a class that contains the entire polynomial
hierarchy of complexity classes [21].
The key observation by Aaronson and Arkhipov (AA)

was that multiplicative approximation of the squared
modulus of permanents of real matrices is also a #P-hard
problem, and it is likely this is the case for general complex
matrices [6]. If boson sampling were classically simulat-
able, one could use Stockmeyer’s approximate counting
algorithm to approximate the output probability to within a
multiplicative error, and this would lead to the collapse
of the polynomial hierarchy to the third level, which is
thought to be unlikely [6]. Given two plausible conjectures,
AA further showed that it is likely that classical simulation
of sampling from probability distributions that closely
approximate the ideal output probability, known as
approximate boson sampling, is also hard.
The approximate sampling problem is of more practical

interest than exact sampling because, in an experiment,

the input quantum state, quantum process, and output
measurement are only characterized approximately, so
one does not sample from the exact probability distribution
(2.1). Moreover, one might not be able to distinguish
efficiently sampling from two probability distributions that
are close to one another. Hence, in practice, an interesting
sampling problem is the one for which approximate
sampling is hard. In this paper, we do not consider this
form of sampling; instead, we focus on simulating exact
sampling from output distributions that arise in the pres-
ence of errors and imperfections. Even though we do not
consider approximate sampling explicitly, our simulation
methods for exact sampling do lead to a sufficient condition
for approximate sampling to be classically simulatable.
We motivate our methods for classical simulation

by considering a simple special case of the generic
sampling problem. Suppose the multimode input state
ρin has a non-negative Glauber-Sudarshan P function
[22,23] PðαjρinÞ, i.e.,

ρin ¼
Z

d2MαPðαjρinÞjαihαj; ð2:2Þ

here, jαi is an M-mode coherent state with phase-space
complex amplitudes α ¼ ðα1; α2;…; αMÞ. (Throughout,
vectors are row vectors. For vectors of complex numbers,
e.g., α, β, ξ, ζ, the dagger transposes to a column vector and
takes a complex conjugate; for the vector of annihilation
operators, a, the dagger transposes and takes the adjoint.)
Such states, as mixtures of coherent states, are often called
classical states. Suppose further that the quantum process
transforms multimode coherent states to classical states;
such processes are known as classical processes [24].
Then, the output state ρout is classical as well and has a
non-negative P function. Using the linearity of quantum
processes over density operators, the output state can be
expressed as

ρout ¼
Z

d2MαEðjαihαjÞPðαjρinÞ

¼
Z

d2Mβjβihβj
Z

d2MαPEðβjαÞPðαjρinÞ; ð2:3Þ

where PEðβjαÞ is the P function of the state EðjαihαjÞ.
Hence, the output probability distribution (2.1) is given by

pðnÞ ¼
Z

d2MβπMQΠðnjβÞ
Z

d2MαPEðβjαÞPðαjρinÞ;

ð2:4Þ

where the Husimi Q functions [25] of the POVM elements,
QΠðnjβÞ ¼ hβjΠnjβi=πM, are always non-negative and
satisfy πM

P
nQΠðnjβÞ ¼ 1.

As all the PQDs in the expression (2.4) are non-negative,
sampling from the output photon-counting probability
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distribution can be efficiently simulated on a classical
computer, provided the PQDs can be efficiently generated:
α is chosen from the input probability distribution PðαjρinÞ;
given α, β is chosen according to the probability distribu-
tion PEðβjαÞ; finally, given β, n is chosen according to
the measurement distribution πMQΠðnjβÞ. Applying this
procedure to input thermal states for LONs and using
Stockmeyer’s approximate counting algorithm, it was
shown that permanents of Hermitian positive-semidefinite
matrices can be approximated to within a multiplicative
constant in BPPNP [26].
In the next subsection, we generalize this approach to

nonclassical states and processes. The key idea, taken over
from classical states and processes, is to use phase-space
complex amplitudes and associated PQDs to describe the
input state, the transition through the quantum process,
and the output measurements. The generalization is to use
operator orderings more general than the normal ordering
of the P function and the antinormal ordering of the Q
function, thus expanding the possibilities for finding non-
negative PQDs.

B. Sufficient conditions for efficient
classical simulation

To formulate our condition for efficient classical
simulation of the generic sampling problem, we use
the s-ordered phase-space quasiprobability distributions
[(s)-PQDs] of a Hermitian operator ρ, which are defined
by [27,28]

WðsÞðβjρÞ ¼
Z

d2Mξ
π2M

ΦðsÞðξjρÞeβξ†−ξβ† ; ð2:5Þ

where

ΦðsÞðξjρÞ ¼ Tr½ρDðξÞ�eξsξ†=2 ð2:6Þ

is the corresponding s-ordered characteristic function, with

DðξÞ ¼ eξa
†−aξ† ¼ ⊗

M

j¼1
DðξjÞ ð2:7Þ

being theM-mode displacement operator, a ¼ ða1;…; aMÞ
the row vector of modal annihilation operators, and
a† ¼ ða†1;…; a†MÞT the column vector of creation operators.
The diagonal matrix s ¼ diagðs1; s2;…; sMÞ has the vari-
ous ordering parameters on the diagonal.
Equation (2.5) is a Fourier transform, which can be

inverted using

Z
d2Mβ
π2M

eζβ
†−βζ† ¼ δ2MðζÞ ð2:8Þ

to give

ΦðsÞðξjρÞ ¼
Z

d2MβWðsÞðβjρÞeξβ†−βξ† : ð2:9Þ

Because ρ is Hermitian, the characteristic function
satisfies ΦðsÞ�ðξjρÞ ¼ ΦðsÞð−ξjρÞ, and the ðsÞ-PQD (2.5)
is real. The ðsÞ-PQDWðsÞðβjρÞ gives theM-mode HusimiQ
function, the Wigner function, and the Glauber-Sudarshan
P function for s ¼ −IM, s ¼ 0, and s ¼ IM, respectively,
where IM denotes the M ×M identity matrix. It is easy to
check that the ðsÞ-PQDs are normalized according to

Z
d2MβWðsÞðβjρÞ ¼ Tr½ρ�: ð2:10Þ

These are usually called PQDs when ρ is a density operator,
but we generalize the terminology to any Hermitian
operator so we can apply it to POVM elements.
The outcome probabilities (2.1) can be expressed in

terms of the PQDs of the output state and the POVM as [27]

pðnÞ ¼
Z

d2MβπMWð−sÞ
Π ðnjβÞWðsÞðβjρoutÞ; ð2:11Þ

where the measurement ð−sÞ-PQD is

Wð−sÞ
Π ðnjβÞ ¼

Z
d2Mξ
π2M

Tr½ΠnDðξÞ�e−ξsξ†=2eβξ†−ξβ† : ð2:12Þ

These measurement ð−sÞ-PQDs are normalized according
to

πM
X
n

Wð−sÞ
Π ðnjβÞ ¼ 1; ð2:13Þ

for any values of β and s, as one sees by applying
Tr½DðξÞ� ¼ πMδ2MðξÞ to Eq. (2.12).
First condition.—We now present a sufficient condition

for efficient classical simulation of the sampling problem. If
there exist values of s such that the PQDs in Eq. (2.11) are
non-negative, they can be used to simulate sampling from
pðnÞ in two steps:

(i) The vector of complex amplitudes β is chosen from
the probability distribution WðsÞðβjρoutÞ.

(ii) For the given β, the outcome n is chosen from the

probability distribution πMWð−sÞ
Π ðnjβÞ.

This condition is particularly useful if the (s)-PQD of
the output state can be efficiently computed, as it can be,
for example, for Gaussian input states and Gaussian
processes [29].
For cases where efficient computation of the output (s)-

PQD is not possible, we now derive a general expression
that relates the (s)-PQD of the output state ρout to the (t)-
PQD of the input state ρin. This derivation introduces the
transfer function, which transfers complex amplitudes from
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input to output of the quantum process and which depends
on both the input and output operator orderings.
An M-mode input state can be expanded in terms of

displacement operators,

ρin ¼
Z

d2Mξ
πM

ΦðtÞðξjρinÞe−ξtξ†=2D†ðξÞ: ð2:14Þ

In this expression, we can replace D†ðξÞ ¼ Dð−ξÞ with
DðξÞ if we wish because ρin is Hermitian. Linearity of
quantum processes implies that

ρout ¼
Z

d2Mξ
πM

ΦðtÞðξjρinÞe−ξtξ†=2EðD†ðξÞÞ; ð2:15Þ

from which we obtain the ðsÞ-ordered characteristic func-
tion of the output state,

ΦðsÞðζjρoutÞ ¼
Z

d2Mξ
πM

ΦðtÞðξjρinÞe−ξtξ†=2þζsζ†=2

× Tr½E(D†ðξÞ)DðζÞ�: ð2:16Þ

Using the Fourier transform (2.5) and its inverse (2.9), we
can obtain the relation between the input and output PQDs,

WðsÞðβjρoutÞ ¼
Z

d2MαTðs;tÞ
E ðβjαÞWðtÞðαjρinÞ; ð2:17Þ

where the transition function associated with the quantum
process is defined by

Tðs;tÞ
E ðβjαÞ ¼

Z
d2Mζ
π2M

eζsζ
†=2eβζ

†−ζβ†
Z

d2Mξ
πM

e−ξtξ†=2eξα†−αξ†

× Tr½E(D†ðξÞ)DðζÞ�: ð2:18Þ

The quantity Tr½EðD†ðξÞÞDðζÞ� gives the “matrix ele-
ments” of the quantum process E in the displacement-
operator basis. We can use the antinormally ordered form of
the displacement operator, combined with the coherent-
state resolution of the identity, I ¼ R

d2Mγjγihγj=πM, to
obtain

e−ξξ†=2DðξÞ ¼ e−âξ†Ieξâ† ¼
Z

d2Mγ
πM

jγihγjeξγ†−γξ† : ð2:19Þ

This allows us to convert E(D†ðξÞ) into the action of the
quantum process on coherent states:

E(D†ðξÞ) ¼ eξξ
†=2

Z
d2Mγ
πM

eγξ
†−ξγ†EðjγihγjÞ: ð2:20Þ

Using Eqs. (2.18) and (2.20), one can check that for trace-
preserving quantum processes, we have

Z
d2MβTðs;tÞ

E ðβjαÞ ¼ 1: ð2:21Þ

We do not plug Eq. (2.20) into Eq. (2.18) because generally
the integrals diverge; the art of finding a well-behaved
transition function is, for a specific quantum process, to
find the most favorable input and output ordering param-
eters, s and t, that make the integrals converge.
Now, by combining Eqs. (2.11) and (2.17), we can

assemble the ingredients for a classical simulation of
sampling from the output distribution of the quantum
circuit shown in Fig. 1,

pðnÞ ¼
Z

d2Mβ
Z

d2MαπMWð−sÞ
Π ðnjβÞTðs;tÞ

E ðβjαÞ

×WðtÞðαjρinÞ: ð2:22Þ

Second condition.—We can carry out a classical simu-
lation, using the following procedure, if there exist values
of t and s such that the PQDs of the input, the transition
function, and the measurement are all non-negative and
efficiently describable:

(i) The vector of complex amplitudes α is chosen from
the input probability distribution WðtÞðαjρinÞ.

(ii) For the given α, the vector β is chosen from the

transition probability distribution Tðs;tÞ
E ðβjαÞ.

(iii) For the given β, the outcome n is chosen from the

output probability distribution πMWð−sÞ
Π ðnjβÞ.

That the three probability distributions are efficiently
describable must be judged on a case-by-case basis. For
the input, this is generally achieved by assuming that the
input state ρin is a product state of theM modes or, perhaps,
a product of blocks of modes of fixed size; likewise, for the
output, the measurements are generally product measure-
ments of the M modes or products of measurements on
blocks of fixed size. The complexity of the transition
function depends on the quantum process; for the LONs
used in boson sampling, the transition function is Gaussian
and can be generated trivially from the matrix that describes
the LON, as we show in Sec. III.
This second condition includes the previous results as

special cases. For classical states and classical processes,
we can choose s ¼ t ¼ IM, and Eq. (2.22) reduces to
Eq. (2.4). In addition, for s ¼ t ¼ 0, we have that when
the transition function is non-negative and the input
quantum state and output POVM elements have non-
negative Wigner functions, sampling from the output
distribution can be simulated classically [2].
A procedure for determining if there are input and output

orderings that give non-negative quasidistributions is the
following. The (t)-PQD WðtÞðαjρinÞ of the input state is
non-negative for ordering parameters t ≤ t̄, where t̄ ≥ −IM,
and the (−s)-PQD Wð−sÞ

Π ðnjβÞ of the POVM elements is
non-negative for s ≥ s̄, i.e., sk ≥ s̄k, for all k, where s̄ ≤ IM.
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The necessary and sufficient condition for there also to be a
non-negative transition function is that Tðs̄;t̄ÞðβjαÞ be non-
negative and no more singular than a δ function. This is a
necessary and sufficient condition for our second condition
to yield a classical simulation.
A crucial point, in general and for what follows, is that

simulations using our first condition provide tighter bounds
for classical simulation than the second condition because
the first condition, unlike the second, does not require
anything about the input PQD, in particular, that it be non-
negative. To make the difference clear, suppose the input
state is a nonclassical Gaussian state, and the process is also
a nonclassical process, but one that cancels the nonclassi-
cality of the input state in such a way as to make the output
state classical; an example is provided by input squeezed
states and antisqueezing operations. In this situation,
for any measurement at the output, the experiment is
classically simulatable according to the first condition.
For the second condition, however, the input PQD and the
transition function are only non-negative for a limited range
of ordering parameters t ≤ t̄ < IM, and only for certain
measurements does the second condition hold.

III. EFFICIENT CLASSICAL SIMULATIONS
OF IMPLEMENTATIONS OF BOSON SAMPLING

A. General considerations for passive
linear optical networks

We now consider the case where the quantum process is
a lossy M-mode LON. In this case, the quantum process
takes coherent states to coherent states according to [30]

ELONðjγihγjÞ ¼ jγLihγLj; ð3:1Þ

where L is the M ×M transfer matrix describing the LON.
A LON is an example of what we call a classical process
in Sec. II A.
For a lossless LON, the matrix L is the unitary matrix U

mentioned previously. When there are losses, the quantum
operation (3.1) follows from a very simple model of an
environment: In addition to the M actual modes, there are
M loss (environment) modes that are initially in vacuum
and that carry away photons lost within the LON; the
larger LON that includes the loss modes is described by a
unitary operator ~U, which transforms annihilation operators
according to

~U†ð a a0 Þ ~U ¼ ð a a0 Þ ~U; ð3:2Þ

where a0 is the row vector of annihilation operators for the
M loss modes and

~U ¼
�
L N

P M

�
ð3:3Þ

is the unitary matrix that describes the complex-amplitude
transformation within the larger LON. The larger LON
takes overall coherent states to overall coherent states
according to

~Ujð γ γ0 Þi ¼ jð γ γ0 Þ ~Ui: ð3:4Þ

The quantum operation (3.1) follows from tracing out the
loss modes:

ELONðjγihγjÞ ¼ Tr0½ ~Ujð γ 0 Þihð γ 0 Þj ~U†�
¼ Tr0½jð γL γN Þihð γL γN Þj�
¼ jγLihγLj: ð3:5Þ

What the model teaches is that L is a submatrix of the larger
unitary matrix ~U and thus satisfies L†L ¼ IM − P†P ≤ IM.
In an experiment, the transfer matrix L of any LON can be
efficiently characterized by inputting coherent states [30].
We can use the normally ordered form of the displace-

ment operator, DðζÞ ¼ e−ζζ†=2eζa†e−aζ† , to obtain

Tr½ELONðjγihγjÞDðζÞ� ¼ Tr½jγLihγLjDðζÞ�
¼ e−ζζ†=2eζL†γ†−γLζ† : ð3:6Þ

Plugging this into Eq. (2.20) and invoking Eq. (2.8) gives
us

Tr½ELONðD†ðξÞÞDðζÞ� ¼ πMδ2Mðξ − ζL†ÞeζðL†L−IMÞζ† :

ð3:7Þ

Thus, the transition function (2.18) becomes

Tðs;tÞ
LONðβjαÞ ¼

Z
d2Mζ
π2M

e−ζΣζ†=2eðβ−αLÞζ†−ζðβ†−L†α†Þ

¼ 2M

πM detΣ
exp½−2ðβ − αLÞΣ−1ðβ† − L†α†Þ�:

ð3:8Þ

The transition function is well behaved and non-
negative, and has the final (normalized) Gaussian form,
if and only if

Σ ¼ IM − L†L − sþ L†tL ≥ 0; ð3:9Þ

i.e., Σ is positive (semidefinite). Note that if we choose the
same ordering at input and output, i.e., s ¼ t ¼ sIM, then

Σ ¼ ð1 − sÞðIM − L†LÞ ≥ 0; ð3:10Þ

provided s ≤ 1; further choosing s ¼ 1, we have Σ ¼ 0 and
thus
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TðIM ;IMÞ
LON ðβjαÞ ¼ δ2Mðβ − αLÞ: ð3:11Þ

To apply our second method for generating an efficient
classical simulation of sampling, we should apply the
procedure outlined at the end of Sec. II B. Suppose the
input state has non-negative ðtÞ-PQD WðtÞðαjρinÞ for t ≤ t̄,
and the output measurement has non-negative ð−sÞ-PQD
Wð−sÞ

Π ðnjβÞ for s ≥ s̄. Then, the necessary and sufficient
condition for our second method to yield an efficient
classical simulation of sampling from the output probability
distribution is that

Σ̄ ¼ IM − L†L − s̄þ L† t̄L ≥ 0: ð3:12Þ

Two special cases deserve attention. For a lossless LON,
the transfer matrix L ¼ U is unitary, and the condition
(3.12) becomes s̄ ≤ U† t̄U. In the case of identical
measurements on all the output modes, the POVM
elements become a product Πn ¼⊗M

k¼1 Πnk , where fΠnkg
is the POVM for the measurement on output mode k, and
the (−s)-PQD of the measurements is also a product,

Wð−sÞ
Π ðnjβÞ ¼ Q

M
k¼1 W

ð−skÞ
Π ðnkjβkÞ. In this situation, the

optimal output ordering parameters are the same for all
M modes, i.e., s̄ ¼ s̄IM. Thus, for a lossless LON with
identical product measurements, the condition (3.12) sim-
plifies to s̄IM ≤ U† t̄U, which is equivalent to s̄IM ≤ t̄.
In the next two subsections, we apply our conditions

for classical simulations to two schemes for boson sam-
pling in the presence of errors. First, however, we digress
briefly to note that since a LON is a classical process, we
can provide a classical simulation for all classical input
states since we can choose t ¼ s ¼ IM, i.e., the P function
for the input state and the (always non-negative)Q function
for the measurements; this leads to the δ transition function
of Eq. (3.11). This is the motivating case considered at
the end of Sec. II A. A particular example is provided by
inputting coherent states to a LON and performing any
measurements at the output.
The flip side of classical input states is classical

measurements, such as heterodyne measurements, for
which the P functions of the POVM elements are non-
negative, allowing us to choose s ¼ −IM; in this situation,
we can choose t ¼ −IM, i.e., the Q function for the input
state, and have a non-negative transition function according
to Eq. (3.10). Hence, in the case of classical measurements,
efficient classical simulation is possible for any input state.
In the symmetric case, where both the input state and the

POVM elements have non-negative Wigner functions, we
can choose t ¼ s ¼ 0, and given Eq. (3.10), the transition
function is always non-negative. An example is Gaussian
input states to a LON and Gaussian measurements at the
output [31].

B. Boson sampling with single-photon sources

We now investigate the effect of errors in a practical
implementation of boson sampling that uses single-photon
sources and on-off photodetectors. Recall that in this
model, which is the one proposed originally by
Aaronson and Arkhipov [6], N single photons are injected
into the first N ports of an M-port LON, with M ≫ N, and
the remaining N −M ports receive the vacuum state. To
avoid having more than one count at an output detector, one
generally requires that the number of photons counted at
the detectors be ≲ ffiffiffiffiffi

M
p

[6,9]. We consider the following
sources of error: impurity of the input photons and mode
mismatching of these photons into the LON, losses and
mode mismatching within the LON, and inefficiency and
random counts in the detectors.
It is a considerable practical challenge to generate a

single-photon state. We assume that the output of the
single-photon sources is a statistical mixture of vacuum and
a single photon, ð1 − μÞj0ih0j þ μj1ih1j, μ ∈ ½0; 1�. Note
that this state is the output of a beam splitter with trans-
missivity

ffiffiffi
μ

p
when the beam splitter is illuminated by a

pure single photon. In addition to the impurity of the input,
the input photons are generally not mode-matched to the
temporal, frequency, and polarization modes that interfere
ideally through the LON. The nonoverlapping parts of the
input photons are lost to the ideal interference that leads
to the probability distribution one wants to sample at the
output, so we treat them as a loss and model that loss by
virtual beam splitters with transmissivity

ffiffiffiffiffi
ηB

p
. Taking into

account both the impurity and the mode mismatching, we
have that the state input into the first N ports is

ρ ¼ ð1 − η̄Þj0ih0j þ η̄j1ih1j; ð3:13Þ

where η̄ ¼ μηB. We return to a discussion of mode
mismatching, at the input to and throughout the LON, at
the end of this subsection.
By using Eqs. (2.5) and (2.6) for a single mode, the

(t)-PQD of the mixed input state (3.13) is given by [32]

WðtÞðαjρÞ ¼ 2

π

ð1 − tÞð1 − t − 2η̄Þ þ 4η̄jαj2
ð1 − tÞ3 e−2jαj2=ð1−tÞ;

ð3:14Þ

which is non-negative for t ≤ t̄ ¼ 1 − 2η̄ ¼ 1 − 2μηB. As
the vacuum state (η̄ ¼ 0) is a classical state whose (t)-PQD
is non-negative for t ≤ 1, the overall (t)-PQD of the input is
non-negative for

t ≤ t̄ ¼ IM − 2μηBJN; ð3:15Þ

where JN is the diagonal matrix with 1s in the first N
diagonal positions and 0s otherwise.
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Losses within the LON are taken into account by the
transfer matrix L. For a particular implementation of boson
sampling, one should use the measured transfer matrix to
analyze the system [30]. A good part of these losses is
mode mismatching within the network, about which we say
more below. For our analysis, we adopt a simple model of
losses that allows us to investigate how the effect of losses
scales with the size of the network. In particular, we assume
that all paths through the LON suffer the same amount of
loss and thus describe the network by a transfer matrix
L ¼ ffiffiffiffiffi

ηL
p

U, where U is the unitary transfer matrix for a
lossless LON. We make this more specific in the following
way. The network consists of l-port optical elements, each
with a uniform transmissivity

ffiffiffiffiffi
η0

p
, and has depth d. Thus,

each input port speaks to ld output ports. We assume that
the network is fully connected, so M ¼ ld; hence, each
input photon sees a loss ηL ¼ ηd0 ¼ ηlogl M0 ¼ Mlogl η0 .
For the on-off photodetectors, which we assume to be

identical, we use a model similar to that devised in Ref. [33]
for detectors with subunity efficiency and dark counts. We
think of the dark-count probability in the model more
generally than in the original model, however; it is not just
the probability for intrinsic dark counts in the detector, but
it also includes any sort of random counts. We discuss
below how mode-mismatched photons at the input and
within the LON can propagate through the LON and
contribute random counts at the photodetectors. The
POVM elements associated with the on-off outcomes—
zero denotes the off state, i.e., no detector click, and
1 denotes a click—are

Π0ðηD; pDÞ ¼ ð1 − pDÞ
X∞
m¼0

ð1 − ηDÞmjmihmj; ð3:16Þ
Π1ðηD;pDÞ¼I−Π0ðηD;pDÞ

¼
X∞
m¼0

½1−ð1−pDÞð1−ηDÞm�jmihmj; ð3:17Þ

where ηD, satisfying 0 ≤ ηD ≤ 1, is the detector efficiency,
and 1 − pD is the probability of no random count.
The sum in Π0 is an unnormalized thermal state, so

by using the (s)-PQD of a thermal state, we can find the
(−s)-PQD of Π0ðηD; pDÞ to be

Wð−sÞ
Π ð0jβÞ ¼ 1 − pD

π

e−ηDjβj2=½1−ηDð1−sÞ=2�
1 − ηDð1 − sÞ=2 ; ð3:18Þ

this is non-negative provided s ≥ 1 − 2=ηD, which is really
no restriction at all. The (−s)-PQD of Π1ðηD; pdÞ, given by

Wð−sÞ
Π ð1jβÞ ¼ 1

π
−Wð−sÞ

Π ð0jβÞ; ð3:19Þ

is non-negative provided that s ≥ s̄ ¼ 1 − 2pD=ηD.
Writing this in terms of the ordering parameters for all
the detectors, we have non-negative output ðsÞ-PQDs if

s ≥ s̄ ¼
�
1 − 2pD

ηD

�
IM: ð3:20Þ

Putting Eqs. (3.15) and (3.20), plus our description
of the LON, into Eq. (3.12), we find that the condition
for an efficient classical simulation is that UΣ̄U† ¼
ð2pD=ηD − ηLÞIM þ ηL t̄ ≥ 0; provided there is even one
single-photon input, this reduces to the simple condition

pD ≥ η≡ μηBηLηD ¼ μηBηDη
logl M
0 ; ð3:21Þ

where η characterizes the overall loss in the experiment.
Because of the simplicity of our model for losses within the
LON, the condition (3.21) does not apply precisely to
LONs with general transfer matrices L, but the dependence
of ηL on l and M does indicate how the condition for
simulability scales with the size of the LON.
A recent study [34] shows that if a fixed number K of

photons are lost, boson sampling remains classically hard,
provided K is not too large. This suggests that in the
presence of loss, one can inject more single photons into the
LON so that, on average, an interesting boson-sampling
problem is realized. The mean number of photodetector
counts is ηN; if we require that the number of counts does
not exceed

ffiffiffiffiffi
M

p
much and also require N ≤ M, we have

N ¼ minðM;
ffiffiffiffiffi
M

p
=ηÞ. To get an idea of what is going on,

consider an ambitious, but perhaps realistic example in
which μ ¼ 0.5, ηB ¼ 0.1, η0 ¼ 0.98, l ¼ 2, and ηD ¼ 0.95.
ForM ¼ 10, we have ηL ¼ 0.94,

ffiffiffiffiffi
M

p
=η¼ 71, N¼M¼ 10,

and Nη ¼ 0.44; the condition for classical simulability is
that pD ≥ η ¼ 0.044. For M ¼ 100, we have ηL ¼ 0.87,ffiffiffiffiffi
M

p
=η ¼ 241,N ¼ M ¼ 100, andNη ¼ 4.2; the condition

for classical simulability is that pD ≥ η ¼ 0.042. For
M ¼ 1600, we have ηL ¼ 0.81,

ffiffiffiffiffi
M

p
=η ¼ 1044 ¼ N, and

Nη ¼ 40; the condition for classical simulability is
that pD ≥ η ¼ 0.038.
An obvious question is why our method needs random

counts for classical simulability. The answer is that in the
absence of random counts, sampling from the (exact)
output probability distribution cannot be efficiently simu-
lated classically; this can be shown using Stockmeyer’s
approximate counting algorithm. Even for large losses, it is
still possible that all the input photons get counted by the
detectors at the output. As any lossy LON can be thought of
as part of a larger, lossless LON, probabilities of these
events are proportional to the squared modulus of perma-
nents of complex matrices, which are submatrices of a
unitary matrix for the larger LON. If sampling were
classically simulatable, using Stockmeyer’s approximate
counting algorithm, one could approximate one of these
probabilities to within a multiplicative error in BPPNP

(Stockmeyer’s algorithm allows for the proportionality
factors to be of the order 2−polyðNÞ); this would lead to
the collapse of polynomial hierarchy to the third level
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because, as observed by Aaronson and Arkhipov, multi-
plicative approximation of these probabilities is #P hard.
Note, however, that this argument does not imply that
boson-sampling experiments with losses and very low
random counts are still practically interesting. One can
expect that above some threshold for losses, a classical
algorithm can efficiently generate samples from an approxi-
mate probability distribution, and in practice, this cannot be
distinguished from the outcomes of the experiment.
The importance of random counts prompts us to return

to the question of mode mismatching at the input to and
within the LON.Mode mismatching occurs when temporal,
frequency, and polarization properties of photon wave
packets do not overlap ideally at the input to the LON
and at the optical elements used to implement a specific
LON. The nonoverlapping parts of the photon wave
packets are lost to the ideal interference that leads to the
probability distribution one wants to sample at the output.
Mode mismatching is thus a loss mechanism and is likely to
be the dominant loss mechanism within a large optical
network. Without some intervention, however, nonoverlap-
ping parts of the photon wave packets continue through the
LON and are counted within the temporal and spatial
windows defined by the photodetectors. These photocounts
are effectively random and contribute to the random-count
probability of the detectors (they might be correlated
between different output modes, but it is hard to see
how this correlation could be used to our advantage);
indeed, they are very likely to be the dominant contribution
to the random-count probability, as in high-quality detec-
tors, the intrinsic dark-count rate is very low.
In principle, one can use active filters (mode cleaners) to

remove nonoverlapping parts of photon wave packets at the
input to and output from and perhaps within the LON and,
hence, to turn mode mismatching into a genuine loss where
the mode-mismatched parts of the photon wave packets do
not contribute counts at the photodetectors. To assess how
serious this problem is, suppose that mode mismatching
is the dominant loss mechanism. Suppose further that a
fraction fB of the photons lost at the input, numbering
μð1 − ηBÞ, continue into the LON and on to the photo-
detectors and that a fraction fL of the photons lost
within the LON, numbering μηBð1 − ηLÞ, continue to the
detectors. Assuming these mode-mismatched photons are
counted with efficiency ηD, they contribute random-count
probability

pD ¼ ηDμN
M

½fLð1 − ηLÞηB þ fBð1 − ηBÞ�: ð3:22Þ

With the same assumptions and same values for loss
parameters as above, we now also assume that fB ¼ 0.1,
on the grounds that the input loss ηB ¼ 0.1 already reflects
a major attempt to clean up the input wave-packet modes,
and fL ¼ 0.9, on the grounds that it would be quite difficult
to clean up the output photons without introducing

additional losses. With these assumptions, we get pD ¼
0.046 for M ¼ 10, pD ¼ 0.049 for M ¼ 100, and pD ¼
0.034 forM ¼ 1600. Comparing these random counts with
the corresponding thresholds from the previous page
indicates that mode mismatching is indeed a challenge
for boson-sampling experiments of interesting size; recall
that this assumes that additional single photons are fed into
the LON to compensate for losses in order to keep the
number of detected photons as close to

ffiffiffiffiffi
M

p
as possible.

The scaling with M is such that if large LONs can be
constructed without compromising the loss parameters, the
situation gets better as M increases.
It is worth noting that for the range of parameters we have

considered, for which N ≃M, the condition for classical
simulatability is that the number of mode-mismatched
photons counted at the photodetectors, MpD, exceed the
number of mode-matched photons,Nη. This is a useful rule
of thumb for assessing the simulatability of a boson-
sampling experiment.

C. Boson sampling with SPDC sources

A major practical challenge for implementing boson
sampling is reliable single-photon sources. In most quan-
tum-optics experiments, spontaneous parametric down-
conversion (SPDC) is used as a probabilistic source for
preparing single photons [35–38]. If the two-mode
squeezed vacuum state generated by a SPDC source has
weak squeezing, photon counting on the heralding mode
prepares vacuum or a single photon in the signal mode,
which can then be used as one of the inputs to the M input
ports of a boson-sampling LON. This scheme can be
viewed as sampling from the output photon-counting
probability distribution of a larger LON with 2M modes;
the larger LON consists of the identity process acting on
the heralding modes and the original LON acting on the
signal modes. This scenario implements randomized boson
sampling, in which when N photons are randomly detected
in the heralding modes, N single photons are injected
into the corresponding ports of the original LON. (With the
loss parameters we consider here, in boson sampling with
single-photon sources, the single photons are also ran-
domly injected into a LON, but one does not know to which
input ports.) In the absence of any losses or inefficiencies,
the average number of photons input to the signal-mode
LON is N ¼ M sinh2 r, where r is the squeezing parameter,
assumed to be positive without loss of generality; to
achieve N ¼ ffiffiffiffiffi

M
p

≪ M, one chooses sinh2 r ¼ 1=
ffiffiffiffiffi
M

p
[9].

We consider the following sources of error: mode
mismatching of the signal modes into the smaller, signal-
mode LON, described by virtual beam splitters with
transmissivity

ffiffiffiffiffi
ηB

p
; losses in the signal-mode LON,

described by the transfer matrix L, but no losses for the
heralding modes, so that the overall transfer matrix is
IM ⊕ L; and for all modes, the model for random counts
and inefficiency that we introduced previously for on-off
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detectors. Since the input squeezed vacuum states are
Gaussian and the LON is a Gaussian process, we can
efficiently find the (t)-PQD of the output state and use our
first condition to check whether efficient classical simu-
lation of the sampling problem is possible. To simplify
our analysis and to compare directly with our results for
single-photon inputs, we specialize to the simple model for
loss in the signal-mode LON in which L ¼ ffiffiffiffiffi

ηL
p

U. Given
this assumption, all the signal modes suffer the same loss in
the LON, so we can refer the LON losses to the input,
combine them with the mode mismatching of the signal
modes, and thus describe both by virtual beam splitters
with transmissivity

ffiffiffiffiffiffiffi
ηBL

p ¼ ffiffiffiffiffiffiffiffiffiffi
ηBηL

p
, which act on each

signal mode before it enters the signal-mode LON.
The upshot is that the larger LON is fed by M copies of

the two-mode state

ρ0hs ¼ Tr0½ρhs0� ¼ Tr0½Us0ðηBLÞρhs ⊗ j0ih0jU†
s0ðηBLÞ�:

ð3:23Þ

Here, ρhs is the two-mode squeezed vacuum state generated
by a SPDC source, Us0ðηBLÞ is the unitary operator for a
beam splitter with transmissivity

ffiffiffiffiffiffiffi
ηBL

p
that acts on the

signal mode of the SPDC and a vacuum input, and the trace
is taken over the mode reflected from the beam splitter.
With the LON losses referred to the input, the larger LON is
now described by the unitary transfer matrix IM ⊕ U,
which corresponds to a δ-function transfer function that
does not alter the negativity of the input (t)-PQD.
The state ρ0hs is a Gaussian state. The Wigner function

(t ¼ 0) of any Gaussian state is a Gaussian function, but if
the state is nonclassical, there exists t̄ ∈ ð0; 1� such that for
t ≤ t̄, the ðtÞ-PQD is Gaussian, for t ¼ t̄, the ðtÞ-PQD has
δ-function singularities, and for t > t̄, the (t)-PQD is more
singular than a δ function. In order to find t̄ for ρ0hs, we need
to use the covariance matrix of the Gaussian (t)-PQD and
find the value of t at which the covariance matrix transitions
from positive to negative, i.e., the smallest eigenvalue goes
to zero.
The covariance matrix of the Wigner function of ρhs0 in

Eq. (3.23) is given by

σhs0¼ (I2⊕Bs0ðηBLÞ)ðσhs⊕ I2Þ(I2⊕BT
s0ðηBLÞ); ð3:24Þ

where

σhs ¼
�
cosh 2rI2 sinh 2rZ2

sinh 2rZ2 cosh 2rI2

�
ð3:25Þ

is the covariance matrix of the two-mode squeezed vacuum
state with squeezing parameter r, with Z2 ¼ diagð1;−1Þ
being the Pauli z matrix, and

Bs0ðηBLÞ ¼
� ffiffiffiffiffiffiffi

ηBL
p

I2 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηBL

p
I2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ηBL
p

I2
ffiffiffiffiffiffiffi
ηBL

p
I2

�
ð3:26Þ

is the symplectic transformation of a beam splitter with
transmissivity

ffiffiffiffiffiffiffi
ηBL

p
[39]. The 4 × 4 top-left submatrix of

σhs0 is then the covariance matrix of the Wigner function
of ρ0hs,

σ0hs ¼
�

cosh 2rI2
ffiffiffiffiffiffiffi
ηBL

p
sinh 2rZ2ffiffiffiffiffiffiffi

ηBL
p

sinh 2rZ2 ½1þ ηBLðcosh 2r − 1Þ�I2

�
:

ð3:27Þ

The covariance matrix of the (t)-PQD is given by
σ0hs − tI4; what we need to know is when, as t increases
from zero, the smallest eigenvalue of this 4 × 4matrix goes
to zero. Interchanging rows and columns of σ0hs − tI4
separates it into the direct sum of two 2 × 2 matrices,

�
cosh 2r − t � ffiffiffiffiffiffiffi

ηBL
p

sinh 2r

� ffiffiffiffiffiffiffi
ηBL

p
sinh 2r 1 − tþ ηBLðcosh 2r − 1Þ

�

¼ ½1 − tþ ð1þ ηBLÞsinh2r�I2
� ð1 − ηBLÞsinh2rZ2 � 2

ffiffiffiffiffiffiffi
ηBL

p
sinh r cosh rX2;

ð3:28Þ

which have the same eigenvalues (X2 is the Pauli xmatrix).
The smaller eigenvalue goes to zero when

t ¼ t̄ ¼ 1þ ð1þ ηBηLÞ sinh2 r
− sinh r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηBηLÞ2 sinh2 rþ 4ηBηL

q
; ð3:29Þ

where we have restored ηBL ¼ ηBηL. For the (t)-PQD of the
overall input, we have t̄ ¼ t̄I2M.
The analysis of on-off photodetection in Sec. III B shows

that non-negativity of the measurement (s)-PQDs requires
s ≥ s̄ ¼ 1 − 2pD=ηD, and our first method of simulation
requires that s ¼ t ≤ t̄, so the condition for efficient
classical simulation of the SPDC scheme is that s̄ ≤ t̄,
which gives

pD ≥ −1

2
ηDð1þ ηBηLÞ sinh2 r

þ 1

2
ηD sinh r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηBηLÞ2 sinh2 rþ 4ηBηL

q
: ð3:30Þ

The mean number of photons input to the signal modes
is N ¼ M sinh2 r, meaning that sinh2 r in the above
expressions is a surrogate for N=M. The average number
of counts at the photodetectors is η0N ¼ η0M sinh2 r, where
η0 ¼ ηDηLηB gives the total loss through the system.
As in our analysis of single-photon boson sampling, we
choose η0N ¼ ffiffiffiffiffi

M
p

provided that N ≤ M; i.e., we choose
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N ¼ minðM;
ffiffiffiffiffi
M

p
=η0Þ, which is equivalent to sinh2 r ¼

minð1; 1= ffiffiffiffiffi
M

p
η0Þ. Again, we consider experiments in which

ηB ¼ 0.1, η0 ¼ 0.98, l ¼ 2, and ηD ¼ 0.95. For M ¼ 10,
we have ηL ¼ 0.94,

ffiffiffiffiffi
M

p
=η0 ¼ 36, N ¼ M ¼ 10,

Nη0 ¼ 0.89, and sinh2 r ¼ 1; the threshold for classical
simulability is pD ≥ 0.076. For M ¼ 100, we have
ηL ¼ 0.87,

ffiffiffiffiffi
M

p
=η0 ¼ 120, N ¼ M ¼ 100, Nη0 ¼ 8.3,

and sinh2 r ¼ 1; the threshold for classical simulability
is pD ≥ 0.071. For M ¼ 1600, we have ηL ¼ 0.81,ffiffiffiffiffi
M

p
=η0 ¼ 522 ¼ N, Nη0 ¼ 40, and sinh2 r ¼ 0.33; the

threshold for classical simulability is pD ≥ 0.060. It is
notable that these thresholds are close to twice those we
found under comparable conditions for single-photon
boson sampling; the single-photon thresholds would be
higher if the single-photon sources produced photons with
no impurity (μ ¼ 1).
As in single-photon boson sampling, SPDC boson

sampling suffers from the problem of mode-mismatched
photons becoming random counts in the photodetectors.
The same analysis as for single-photon boson sampling
yields random-count probability (3.22) with μ ¼ 1.
Again assuming fB ¼ 0.1 and fL ¼ 0.9, with all the
other parameters the same as above, the random-count
probability is pD ¼ 0.091 for M ¼ 10, pD ¼ 0.096 for
M ¼ 100, and pD ¼ 0.033 for M ¼ 1600. This indicates
that mode mismatching is a challenge for SPDC boson-
sampling experiments of interesting size. Just as for single-
photon sources, this conclusion assumes that additional
photons are input to compensate for losses, but again the
scaling is favorable provided one can keep losses and mode
mismatching under control as system size increases.

IV. CONCLUSION

In this paper, we established sufficient conditions for
efficient classical simulation of general quantum-optical
experiments that involve a quantum state that is subjected
to an M-mode quantum process and measurement at the
output of the process. These conditions support the notion
that negativity is a quantum resource by showing that
efficient classical simulation of sampling from the output
probability distribution is possible when there are (i) non-
negative output-state and output-measurement quasiprob-
ability distributions or (ii) non-negative input-state and
output-measurement quasiprobability distributions and a
non-negative transition function associated with the quan-
tum process.
We applied our conditions for classical simulability to

two implementations of the boson-sampling problem. We
considered simple models of errors and imperfections to
assess the effects of mode mismatching, loss in the LON,
and inefficiency and random counts of on-off photodetec-
tors. We found that these errors have a significant impact
and obtained random-count thresholds beyond which
efficient classical simulation is possible. For any actual

implementation of boson sampling, however, one should
go beyond the simple examples given here and use our
methods to model all the imperfections, noise, and errors,
particularly, formulating and analyzing a detailed model
of losses and mode mismatching within the particular LON,
in order to determine when it is possible to do classical
simulations using our methods. In the case of mode
mismatching, nonoverlapping parts of photon wave packets
that proceed to and are counted at the detectors are likely to
be the major contribution to the random-count probability;
hence, it is particularly important to assess the need for and
effectiveness of active mode cleaning (so-called quantum
filters) to mitigate this effect.
We caution that we do not warrant that there is no other

method of efficient classical simulation when our condi-
tions are not satisfied. Indeed, we have only considered the
problem of sampling from the exact output probability
distribution of measurement outcomes. A more general
problem is approximate sampling, i.e., sampling from a
close approximation to the exact probability distribution,
in which case the question is whether sampling from
the approximate distribution can be efficiently simulated
classically. We have shown that in the presence of losses
in boson-sampling experiments and with zero or very low
random counts, the exact sampling problem cannot be
simulated using our methods. Yet, under the same con-
ditions, one might be able to simulate approximate sam-
pling. A possible approach might be to simulate sampling
from a non-negative distribution that approximates a
slightly negative quasidistribution, perhaps using tech-
niques like those recently introduced for discrete-variable
systems [40]. We leave this as a subject for future research.
Several lessons might be drawn from our work in this

paper. First, in any protocol that uses probabilistic state
preparation, the state preparation should be included when
one searches for efficient classical simulations. If classical
simulation is possible for sampling from the whole dis-
tribution, then it is also possible for sampling from a
subdistribution that is chosen by postselection. This is the
approach we used in our analysis of SPDC boson sampling,
where we included the heralding modes explicitly in the
search for a classical simulation. Second, our random-count
thresholds are hard boundaries. These hard boundaries
might be moved closer to the ideal problem by considering
approximate sampling, as discussed above, but the point
here is that such hard boundaries might not be found
by considering perturbations about an ideal protocol. This
might be a general property of analogue quantum protocols
like boson sampling. A third lesson is that it is generally
easier to devise analogue quantum protocols than it is to
show that the protocol does not have an efficient classical
simulation. Confronted with a new analogue quantum
protocol, the responsibility of theorists and experimenters
alike is to put on the classical thinking cap and to focus on
whether classical simulations are possible in the presence
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of noise; this is essential for designing experiments that are
meaningful implementations of the quantum protocol.
Our methods for classical simulation are based on the

wave aspects of boson-sampling experiments, as opposed
to the particle aspects. One classical analogue of boson
sampling replaces the identical input bosons with classical
distinguishable particles undergoing probabilistic transi-
tions within a network; in this situation, output probabilities
are given by permanents of matrices with non-negative
elements [6]. In contrast, in our methods, we deal with
waves undergoing interference within a LON and try
to mimic quantum mechanics by using quasiprobability
distributions to translate from particle inputs and particle
measurements to the complex amplitudes of interfering
waves. This is a natural way to try to simulate an analogue
quantum protocol like boson sampling. We close by noting
that the mode-mismatched photons that make their way to
the detectors, which we identify as the chief challenge for
boson sampling, are effectively the distinguishable photons
of a particle description.
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