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Rayleigh’s criterion for resolving two incoherent point sources has been the most influential measure of
optical imaging resolution for over a century. In the context of statistical image processing, violation of the
criterion is especially detrimental to the estimation of the separation between the sources, and modern
far-field superresolution techniques rely on suppressing the emission of close sources to enhance the
localization precision. Using quantum optics, quantum metrology, and statistical analysis, here we show
that, even if two close incoherent sources emit simultaneously, measurements with linear optics and photon
counting can estimate their separation from the far field almost as precisely as conventional methods do for
isolated sources, rendering Rayleigh’s criterion irrelevant to the problem. Our results demonstrate that
superresolution can be achieved not only for fluorophores but also for stars.
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I. INTRODUCTION

Rayleigh’s criterion for resolving two incoherent point
sources, requiring them to be separated at least by a
diffraction-limited spot size on the image plane [1,2],
has been the most influential measure of optical imaging
resolution for over a century. More recently, insights from
quantum optics [3] and statistics [4] have led to revolutions
in far-field superresolution techniques [5–7] beyond his
criterion. The techniques proposed in Refs. [3,4] rely on
locating a point source when no other nearby sources are
radiating in the same optical mode. While such techniques
have achieved spectacular success in microscopy, they
require sophisticated control of the emission of special
fluorophores and are irrelevant to astronomy and remote
sensing.
For two sources with overlapping radiations on the

image plane, studies have found that signal processing
of the imaging data can still determine their locations,
although the precision in the presence of photon shot noise
quickly deteriorates when Rayleigh’s criterion is violated
[8–10]. The precision degradation is mandated by the
Cramér-Rao lower error bound [11], suggesting that the
degradation is fundamental to direct imaging. Given such
prior work, conventional wisdom thus suggests that the
positions of two incoherent sources should become harder
to estimate when their radiations overlap, a statistical
phenomenon we call Rayleigh’s curse.

Since photon shot noise is now the dominant noise
source in fluorescence microscopy [10,12] as well as stellar
imaging [13–16], it is timely to inquire whether a quantum
treatment can lead to new insights. Here, we attack the
problem from the perspective of quantum metrology, a
branch of quantum information theory relevant to sensing
and imaging [17,18]. To be specific, we derive the
fundamental quantum limit to the precision of locating
two weak thermal optical point sources in the form of the
quantum Cramér-Rao bound (QCRB) proposed by
Helstrom [17]. Surprisingly, we find that the QCRB
maintains a fairly constant value for any separation and
shows no sign of Rayleigh’s curse. This behavior is in stark
contrast to the QCRB for in-phase coherent sources, in
which case Rayleigh’s curse is fundamental [19].
It is known mathematically that there exists a measure-

ment scheme to attain the QCRB for one parameter
asymptotically [20,21]. For a more concrete experimental
implementation, here we propose the method of spatial-
mode demultiplexing (SPADE). We show that SPADE can
ideally estimate the separation between the two sources
with quantum-optimal Fisher information, and we also
propose linear optical system designs that can implement
the measurement. Direct imaging is poor at localization of
two close sources precisely because it estimates their
separation poorly, and SPADE is able to overcome this
problem and Rayleigh’s curse via further linear optical
processing before photon counting.
The subject of quantum imaging has been extensively

studied; see Appendix A for a review. Most prior proposals
rely on nonclassical sources or multiphoton coincidence
measurements, however, making them difficult and ineffi-
cient to use in practice. Incoherent sources, such as
fluorophores and stars, are of course much more common,
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and linear optical methods to enhance the localization
precision for close incoherent sources will be of monu-
mental interest to both localization microscopy [4,6,7] and
astrometry [15,16]. The most relevant prior work remains
the pioneering studies by Helstrom on thermal sources [17],
yet he studied two sources only in the context of binary
hypothesis testing and assumed a given separation in the
two-source hypothesis [22]. As the separation is usually
unknown and needs to be estimated in the first place
[4,6–10,15,16], our parameter-estimation framework
should be more useful.

II. QUANTUM OPTICS FOR WEAK
THERMAL SOURCES

To illustrate the essential physics, we follow Lord
Rayleigh’s lead [1] and assume quasimonochromatic scalar
paraxial waves and one spatial dimension on the object and
image planes. Within each short coherence time interval for
a thermal source at an optical frequency, it is standard
[13,14,23–27] to assume that the average photon number ϵ
arriving on the image plane is much smaller than 1, and
useful information is obtained only after many photons
have been measured over many such intervals. This means
that the quantum density operator for the optical fields on
the image plane in each coherence time interval can be well
approximated as

ρ ¼ ð1 − ϵÞρ0 þ ϵρ1 þOðϵ2Þ; ð2:1Þ
where ρ0 ¼ jvacihvacj is the zero-photon state, ρ1 is a one-
photon state, andOðϵ2Þ denotes terms on the order of ϵ2; see
AppendixB for a detailed derivation. For the rest of thepaper,
we neglect the Oðϵ2Þ terms and use the ≈ sign to denote the
first-order approximations. Similar approximations were
also used earlier to study stellar interferometry [26,27].
A connection with classical statistical optics can be made

by observing that ρ1 is related to the mutual coherence of
the optical fields with respect to the Sudarshan-Glauber
distribution. As shown in Appendix B, the one-photon state
for two incoherent point sources and a diffraction-limited
imaging system can be taken as

ρ1 ≈
1

2
ðjψ1ihψ1j þ jψ2ihψ2jÞ; ð2:2Þ

jψ si ¼
Z

∞

−∞
dxψ sðxÞjxi; s ¼ 1; 2; ð2:3Þ

where x is the image-plane coordinate normalized with
respect to the magnification factor of the imaging system
[28], jxi ¼ a†ðxÞjvaci is the photon image-plane position
eigenket defined with respect to annihilation and creation
operators that obey ½aðxÞ; a†ðx0Þ� ¼ δðx − x0Þ [29,30], and
ψ sðxÞ is the image-plane wave function from each source.
We can reproduce the standard Poisson model of

direct image-plane photon counting [10,12–14,31–33] by

considering the 1 − ϵ probability of no photon count and
the ϵ ≪ 1 probability of measuring a photon. If a photon is
detected, the probability density of the photon position x is

ΛðxÞ ¼ 1

2
ðjhxjψ1ij2 þ jhxjψ2ij2Þ

¼ 1

2
½jψ1ðxÞj2 þ jψ2ðxÞj2�: ð2:4Þ

With ϵ ≪ 1, the photon count at each pixel with width dx
can be approximated as Poisson with a mean given by
ϵΛðxÞdx. The total photon count over M coherence time
intervals then remains approximately Poisson with a mean
MϵΛðxÞdx ¼ NΛðxÞdx, where N ≡Mϵ is the average
photon number collected over the M intervals and ΛðxÞ
becomes the mean intensity profile. To illustrate, Fig. 1
depicts the wave functions and the mean intensity for a
typical imaging system. Note the crucial point that
hψ1jψ2i ¼

R∞
−∞ dxψ�

1ðxÞψ2ðxÞ ≠ 0, and the spatial modes
excited by the two sources are, in general, not orthogonal,
especially when Rayleigh’s criterion is violated. This
overlap underlies all the physical and mathematical diffi-
culties with the resolution problem, as it implies, on a
fundamental level, that the two modes cannot be separated
for independent measurements.

III. CLASSICAL AND QUANTUM
CRAMÉR-RAO BOUNDS

To investigate the impact of measurement noise on
parameter estimation, suppose that ρ depends on a set of
unknown parameters denoted by fθμ; μ ¼ 1; 2;…g [34],

(a)

(b)

FIG. 1. (a) Two photonic wave functions on the image plane,
each coming from a point source. X1 and X2 are the point-source
positions, θ1 is the centroid, θ2 is the separation, and σ is the
width of the point-spread function. (b) If photon counting is
performed on the image plane, the statistics are Poisson with a
mean intensity proportional to ΛðxÞ ¼ ½jψ1ðxÞj2 þ jψ2ðxÞj2�=2.
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and a quantum measurement is made on the image plane
over the M intervals to estimate θ. Any quantum meas-
urement can be mathematically described by a positive
operator-valued measure (POVM) EðYÞ [17], such that
the probability distribution of measurement outcome Y is
PðYÞ ¼ trEðYÞρ⊗M, with tr denoting the operator trace and
ρ⊗M denoting a tensor product of M density operators. Let
θ̌μðYÞ be an estimator and

Σμν ≡
Z

dYPðYÞ½θ̌μðYÞ − θμ�½θ̌νðYÞ − θν� ð3:1Þ

be the error covariance matrix. For any unbiased estimator,
the Cramér-Rao bound is given by

Σμμ ≥ ðJ −1Þμμ; ð3:2Þ

where

J μν ≡
Z

dY
1

PðYÞ
∂PðYÞ
∂θμ

∂PðYÞ
∂θν ð3:3Þ

is the Fisher information matrix with respect to PðYÞ [11].
For the Poisson model of direct imaging [10,31–33],

J ðdirectÞ
μν ¼ N

Z
∞

−∞
dx

1

ΛðxÞ
∂ΛðxÞ
∂θμ

∂ΛðxÞ
∂θν : ð3:4Þ

Alternatively, the same result can be derived without the
Poisson approximation by considering the one-photon
distribution given by Eq. (2.4) and no multiphoton coinci-
dence. As the Cramér-Rao bound is asymptotically achiev-
able [11], the Fisher information has become the standard
precision measure in modern fluorescence microscopy
[10,31–33] as well as astronomy [13,16,35,36].
Direct imaging, though standard, is but one of the infinite

measurement methods permitted by quantum mechanics.
The ultimate performance of any quantum measurement
and any unbiased estimator can be quantified using the
quantum Cramér-Rao bound

Σμμ ≥ ðJ −1Þμμ ≥ ðK−1Þμμ; ð3:5Þ

whereK is the quantumFisher informationmatrix in terms of
ρ⊗M [17]. To computeK analytically, we assume a spatially
invariant imaging system with ψ sðxÞ ¼ ψðx − XsÞ, where
ψðxÞ is the point-spread function of the imaging system and
Xs is the unknown position of each source [28]. BothJ ðdirectÞ
andK turn out to be diagonal if we redefine the parameters of
interest as the centroid

θ1 ¼
X1 þ X2

2
ð3:6Þ

and the separation

θ2 ¼ X2 − X1; ð3:7Þ

as depicted in Fig. 1. We also assume, with little loss of
generality, that the point-spread function has a constant
x-independent phase, which can be easily implemented by a
two-lens system [28]. The phase is then irrelevant to ρ1 in
Eq. (2.2), and ψðxÞ can be taken as real.
The computation of K is described in Appendix C; the

result is

K11 ≈ 4NðΔk2 − γ2Þ; K22 ≈ NΔk2; ð3:8Þ

with K12 ¼ K21 ≈ 0, where

Δk2 ≡
Z

∞

−∞
dx

�∂ψðxÞ
∂x

�
2

ð3:9Þ

is the spatial-frequency variance of the real point-spread
function set by the diffraction limit and

γ ≡
Z

∞

−∞
dx

∂ψðxÞ
∂x ψðx − θ2Þ ð3:10Þ

is a parameter that depends on θ2. The prefactorN indicates
a shot-noise scaling with respect to the average photon
number, as expected from classical sources [18,19]. For
θ2 → ∞, γ2 → 0, and we recover the standard shot-noise
limit to the localization of isolated sources.
To compare the quantum Fisher information with the

classical information for direct imaging, Fig. 2 plots the
diagonal elements of J ðdirectÞ and K, assuming a Gaussian
point-spread function [12] ψðxÞ ¼ ð2πσ2Þ−1=4 exp½−x2=
ð4σ2Þ�, where σ ¼ 1=ð2ΔkÞ ¼ λ=ð2πNAÞ, λ is the free-
space wavelength, and NA is the effective numerical
aperture. The constant K22, in particular, becomes

K22 ≈
N
4σ2

: ð3:11Þ

The Gaussian case is representative, and the same quali-
tative behaviors can be observed for other common point-
spread functions. For the centroid, both the classical and
quantum information are within a factor of 2 of the standard

limit N=σ2. J ðdirectÞ
11 ≤ K11 as it should, but the small gap

between the two means that there is little room for
improvement.
The difference between the separation information

quantitiesK22 and J
ðdirectÞ
22 in Fig. 2 is much more dramatic.

Both quantities approach the same limit N=ð4σ2Þ as
θ2 → ∞, implying that direct imaging is quantum optimal
for well-separated sources. For θ2=σ → 0, however, the

classical information J ðdirectÞ
22 decreases to zero. This means

that direct imaging is progressively worse at estimating the
separation for closer sources, to the point that the infor-
mation vanishes and the Cramér-Rao bound diverges at
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θ2 ¼ 0. We call this divergent behavior due to overlapping
wave functions “Rayleigh’s curse,” as it implies a severe
penalty on the localization precision when the intensity
profiles overlap significantly and Rayleigh’s criterion is
violated for a given N.
Direct imaging suffers from Rayleigh’s curse for any

point-spread function, as ∂ΛðxÞ=∂θ2 vanishes at θ2 ¼ 0
while ΛðxÞ remains nonzero in regions of x where the

derivative vanishes, causing J ðdirectÞ
22 to vanish via Eq. (3.4).

This is the reason why the Cramér-Rao bounds derived in
Refs. [8–10] for separation estimation all diverge when
Rayleigh’s criterion is violated. Remarkably, the quantum
informationK22 in Eq. (3.8) stays constant regardless of the
separation. If the centroid θ1 is known, there exists a
POVM with error Σ22 asymptotically attaining the single-
parameter QCRB [20,21], viz.,

Σ22 →
1

K22

≈
1

NΔk2
; N → ∞: ð3:12Þ

This means that Rayleigh’s curse can be avoided for
separation estimation, and considerable improvements
can be obtained, if the optimal quantum measurement
can be implemented. To expound the issue, Fig. 3 plots the
quantum and classical Cramér-Rao bounds 1=K22 and

1=J ðdirectÞ
22 , demonstrating more dramatically the divergent

error in the classical case and the substantial room for
improvement offered by quantum mechanics.

IV. SPATIAL-MODE DEMULTIPLEXING (SPADE)

Instead of measuring the position of each photon in the
direct imaging method, we propose a discrimination in
terms of the Hermite-Gaussian spatial modes [37] to
estimate the separation. Consider the basis fjϕqi; q ¼
0; 1;…g with eigenkets given by

jϕqi ¼
Z

∞

−∞
dxϕqðxÞjxi; q ¼ 0; 1;…; ð4:1Þ

ϕqðxÞ ¼
�

1

2πσ2

�
1=4 1ffiffiffiffiffiffiffiffiffi

2qq!
p Hq

�
xffiffiffi
2

p
σ

�
exp

�
−

x2

4σ2

�
;

ð4:2Þ

where Hq is the Hermite polynomial [37]. The POVM
for each coherence time interval can be expressed as
projections

E0 ¼ jvacihvacj; E1ðqÞ ¼ jϕqihϕqj: ð4:3Þ

Conditioned on a detection event, the probability of
detecting the photon in the qth mode becomes

P1ðqÞ ≈
1

2
ðjhϕqjψ1ij2 þ jhϕqjψ2ij2Þ: ð4:4Þ

Similar to direct imaging, ϵ ≪ 1 implies that, over M
intervals, the total photon count mq in each Hermite-
Gaussian mode can be approximated as Poisson with a
mean given by NP1ðqÞ.

FIG. 3. The quantum Cramér-Rao bound (1=K22) and the

classical bound for direct imaging (1=J ðdirectÞ
22 ) on the error of

separation estimation. The bounds are normalized with respect to
the quantum value 4σ2=N. Rayleigh’s curse refers to the
divergence of the classical bound when θ2 ≲ σ, as discovered
by Refs. [8–10].

FIG. 2. Plots of Fisher information versus the separation for a
Gaussian point-spread function. K11 and K22 are the quantum
values for the estimation of the centroid θ1 ¼ ðX1 þ X2Þ=2 and

the separation θ2 ¼ X2 − X1, respectively, while J ðdirectÞ
11 and

J ðdirectÞ
22 are the corresponding classical values for direct imaging.

The horizontal axis is normalized with respect to the point-spread
function width σ, while the vertical axis is normalized with
respect to N=ð4σ2Þ, the value of K22.
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To proceed further, we assume that the centroid θ1 is
known, and only θ2 is to be estimated. Since centroid
estimation using direct imaging is relatively insensitive to
the separation, the assumption of an accurately known
centroid is not difficult to satisfy; see Appendix D for a
detailed discussion. Under this assumption, we can assume
θ1 ¼ 0 without loss of generality, and the wave functions
become ψ1ðxÞ ¼ ψðxþ θ2=2Þ and ψ2ðxÞ ¼ ψðx − θ2=2Þ.
For simple analytic results, we further assume that the
point-spread function is Gaussian. The overlap factors in
Eq. (4.4) can then be evaluated by recognizing that jϕqi is
mathematically equivalent to an energy eigenstate of a
harmonic oscillator (in the configuration space of the
photon), and jψ1i and jψ2i are equivalent to configura-
tion-space coherent states with displacements �θ2=ð4σÞ.
The result is

P1ðqÞ ≈ jhϕqjψ1ij2 ¼ jhϕqjψ2ij2 ¼ expð−QÞQ
q

q!
;

Q≡ θ22
16σ2

: ð4:5Þ

This formula is valid even if the two sources have unequal
intensities and ρ1 is any mixture of jψ1ihψ1j and jψ2ihψ2j.
The classical Fisher information for the Hermite-Gaussian-
basis measurement over M intervals becomes

J ðHGÞ
22 ≈ N

X∞
q¼0

P1ðqÞ
� ∂
∂θ2 lnP1ðqÞ

�
2

≈
N
4σ2

; ð4:6Þ

which is equal to the quantum information given by
Eq. (3.11) and also free of Rayleigh’s curse.
To measure in the Hermite-Gaussian basis, one needs to

demultiplex the image-plane field in terms of the desired
spatial modes before determining the outcome based on the
mode in which the photon is detected. To do so with a high
information-extraction efficiency, one should perform a
one-to-one conversion of the Hermite-Gaussian modes into
modes in a more accessible degree of freedom with
minimal loss and measurements that capture as many
photons as possible. For example, we can take advantage
of the fact that the Hermite-Gaussian modes are waveguide
modes of a quadratic-index waveguide [37]. Suppose that
we couple the image-plane optical field into such a highly
multimode waveguide centered at the centroid position, as
shown in Fig. 4. Each mode with index q acquires a
different propagation constant βq along the longitudinal
direction z. If a grating coupler [38] with spatial frequency
κ is then used to couple all the modes into free space, each
mode will be coupled to a plane wave with a different
spatial frequency βq − κ along the z direction in free space,
and a Fourier-transform lens can be used to focus the
different plane waves onto different spots of a photon-
counting array in the far field.

An alternative is to use evanescent coupling with differ-
ent single-mode waveguides [39], as depicted in Fig. 5. If
each single-mode waveguide is fabricated to have a
propagation constant equal to a different value of βq, the
phase-matching condition will cause each mode in the
multimode waveguide to be coupled to a specific fiber.
Given these physical setups, we can now explain the

operation of SPADE in a more intuitive semiclassical optics
language: It is based on the exquisite sensitivity of the
mode-coupling efficiencies to the offset of the wave
functions from the centroid. The incoherent sources are
literally blinking on the fundamental coherence time scale,
causing each image-plane photon to have a wave function
given randomly by ψ1ðxÞ or ψ2ðxÞ. Either wave function
can excite the waveguide modes coherently with the same
excitation probabilities, causing the final photon counts to
be as sensitive to the offset for two sources as it is for one.
Put another way, the incoherence between the two sources
implies a random relative phase between the two fields and
enables coupling into the first-order odd mode, which is the
main spatial mode responsible for the high sensitivity to
small offsets.

FIG. 4. A multimode-waveguide SPADE with a grating output
coupler and far-field photon counting. The photon counter at the
end of the multimode waveguide captures any remaining photon
in the higher-order or leaky modes.

FIG. 5. An alternative design, with evanescent coupling to
single-mode waveguides with different propagation constants for
phase matching. The photon counter at the end of the multimode
waveguide captures any remaining photon in the higher-order or
leaky modes.
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The use of photon counting is essential here to discrimi-
nate against the abundant but uninformative zero-photon
events. If homodyne or heterodyne methods were used
instead, they would suffer from excess vacuum fluctuations
whennophoton arrives. The poor performance of heterodyne
methods for weak thermal sources is also known in the
context of stellar interferometry [27,40]. The situation is
different from measurements of coherent light, the density
operator of which contains off-diagonal termswith respect to
the photon-number basis, and the probabilistic photon
picture is less adequate. Our preliminary calculations [41]
confirm this expectation and suggest that heterodyne detec-
tion of the spatial modes still suffers from Rayleigh’s curse.
Suppose that a total of L photons are detected over theM

trials. A record of the modes for the L photons ðq1;…; qLÞ
can be obtained, but in fact, a time-resolved record is not
necessary, as

P
lql is a sufficient statistic for estimating Q

and θ2 [42], meaning that the set of photon numbers fmq ¼P
lδqql ; q ¼ 0; 1;…g detected in different modes is also

sufficient. The maximum-likelihood estimator becomes

Q̌ML ¼ 1

L

X
q

qmq; θ̌2ML ¼ 4σ
ffiffiffiffiffiffiffiffiffi
Q̌ML

q
; ð4:7Þ

which is straightforward to implement computationally.
For L ¼ 0, one can set θ̌2 to a constant value; the L ¼ 0

probability ð1 − ϵÞM ≈ expð−NÞ is, in any case, negligible
for large N. Maximum-likelihood estimation can asymp-

totically saturate the Cramér-Rao bound Σ22 ≥ 1=J ðHGÞ
22 for

large M [42]. With J ðHGÞ
22 ≈K22, the QCRB is asymptoti-

cally attainable as well. Appendix E reports a Monte Carlo
analysis of the maximum-likelihood estimator for SPADE,
confirming that the Cramér-Rao bound remains close to the
estimation error for finite photon numbers.

V. BINARY SPADE

Since direct imaging has trouble estimating the separa-
tion only when θ2=σ is small, and only low-order Hermite-
Gaussian modes in SPADE are excited significantly in that
case, we can focus on the discrimination of low-order
modes to simplify the SPADE design. One such design is
depicted in Fig. 6, where only the q ¼ 0 component is
coupled into the single-mode waveguide, while any photon
in the higher-order modes remains in the multimode
waveguide for subsequent detection. An alternative design

is depicted in Fig. 7: The q ¼ 0mode is coupled to a single-
mode waveguide, while higher-order modes are necessarily
coupled to the leaky modes of the waveguide, which are
also measured.
Conditioned on a detection event, the probability of

detecting the photon in the q ¼ 0 mode remains

P1ðq ¼ 0Þ ≈ expð−QÞ; ð5:1Þ

but now the higher-order modes cannot be discriminated,
and the probability of detecting a photon in any higher-
order mode becomes

P1ðq > 0Þ ¼ 1 − P1ðq ¼ 0Þ ≈ 1 − expð−QÞ: ð5:2Þ

The Fisher information for this scheme is hence

J ðbÞ
22 ≈

N
4σ2

Q expð−QÞ
1 − expð−QÞ : ð5:3Þ

Figure 8 compares J ðbÞ
22 with the optimal value J ðHGÞ

22 ≈
K22 as well as J

ðdirectÞ
22 for direct imaging. It can be seen that

binary SPADE gives significant information for small θ2=σ,
which happens to be the regime where direct imaging
performs poorly. Binary SPADE actually works less well
when the sources are far apart, and the two methods can
complement each other to enhance the localization pre-
cision, as shown in Appendix D.
For a total of L detected photons, m0 (the number of

photons detected in the q ¼ 0 mode) and L are sufficient
statistics for estimating Q and θ2, and m0 follows the
binomial distribution for L trials and success probability
expð−QÞ [42]. The maximum-likelihood estimator becomes

Q̌ðbÞ
ML ¼ − ln

m0

L
; θ̌ðbÞ2 ML ¼ 4σ

ffiffiffiffiffiffiffiffiffi
Q̌ðbÞ

ML

q
: ð5:4Þ

For L ¼ 0 or m0 ¼ 0, one can select finite values for θ̌2 to
regularize the estimator. Appendix E reports a Monte Carlo
analysis of the resulting estimation error, confirming that it
remains close to the Cramér-Rao bound for finite photon
numbers.
Compared with the large amount of data generated by

direct imaging and the complex algorithms needed to
FIG. 6. Binary SPADE with evanescent coupling to only one
single-mode waveguide.

FIG. 7. An alternative design of binary SPADE with a single-
mode waveguide and leaky-mode detection.
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process them, only two photon numbers are needed by
binary SPADE to estimate the separation precisely. The
highly compressed measurement output and computation-
ally simple estimators, enabled by the coherent optical
processing, come as bonuses with our schemes.

VI. OTHER POINT-SPREAD FUNCTIONS

Our analysis of SPADE so far relies on the assumption of
a Gaussian point-spread function. For other point-spread
functions, it is nontrivial to find a suitable basis of spatial
modes, although we can still rely on the mathematical
existence of a quantum-optimal measurement [20,21] to be
sure that the QCRB can be saturated. For a more concrete
method, the analysis of the binary SPADE schemes is
fortunately still tractable, if we assume a single-mode
waveguide with a mode profile that matches the point-
spread function ψðxÞ centered at the centroid position.
Define jψi ¼ R

∞
−∞ dxψðxÞjxi as the state of one photon in

the waveguide mode. The efficiency of coupling a photon
in state jψ1i or jψ2i into the waveguide mode becomes

jhψ jψ1ij2 ¼ jhψ jψ2ij2 ¼
����
Z

∞

−∞
dxψ�ðxÞψ

�
xþ θ2

2

�����
2

¼
����
Z

∞

−∞
dkjΨðkÞj2 exp

�
ikθ2
2

�����
2 ≡ϒðθ2Þ;

ð6:1Þ

where ϒðθ2Þ is the mode overlap factor and ΨðkÞ≡
ð2πÞ−1=2 R∞

−∞ dxψðxÞ expð−ikxÞ is the optical transfer

function of the imaging system before the image plane
[28]. For the density operator in Eqs. (2.1), (2.2), and (2.3),
or in fact any mixture of jψ1ihψ1j and jψ2ihψ2j, the
probability of finding a photon in the waveguide mode
becomes PðψÞ ≈ ϵϒ, and the probability of finding a
photon in any other mode is PðψÞ ≈ ϵð1 −ϒÞ. The
Fisher information over M intervals is then

J ðbÞ
22 ≈

N
ϒð1 −ϒÞ

�∂ϒ
∂θ2

�
2

: ð6:2Þ

To study its behavior for small θ2, expand ϒðθ2Þ in
Eq. (6.1) as ϒðθ2Þ ¼ 1 − Δk2θ22=4þOðθ42Þ with Δk2 ¼R
∞
−∞ dkjΨðkÞj2k2 − ½R∞

−∞ dkjΨðkÞj2k�2, giving

J ðbÞ
22 ðθ2 ¼ 0Þ ≈ NΔk2: ð6:3Þ

Hence, J ðbÞ
22 can reach the quantum information K22 ¼

NΔk2 at θ2 ¼ 0, precisely where J ðdirectÞ
22 vanishes and

Rayleigh’s curse is at its worst. For larger θ2, J ðbÞ
22 is

expected to decrease, as the scheme is unable to discrimi-
nate the higher-order modes that become more likely to be
occupied. Figure 9 plots K22, the numerically computed

J ðdirectÞ
22 , and J ðbÞ

22 for the sinc point-spread function [1]
ψðxÞ ¼ ð1= ffiffiffiffiffi

W
p Þsincðx=WÞ, whereW¼ λ=ð2NAÞ, sincu≡

sinðπuÞ=ðπuÞ for u ≠ 0 and sincð0Þ≡ 1. The information
quantities demonstrate behaviors similar to the Gaussian
case.

FIG. 8. Fisher information for separation estimation versus
normalized separation θ2=σ for a Gaussian point-spread function.

J ðHGÞ
22 is the information for the ideal Hermite-Gaussian-basis

measurement, which is equal to the quantum value K22, J
ðdirectÞ
22

is for direct imaging, and J ðbÞ
22 is for binary SPADE. The vertical

axis is normalized with respect to J ðHGÞ
22 ¼ K22 ¼ N=ð4σ2Þ.

FIG. 9. Fisher information for separation estimation versus
normalized separation θ2=W for the sinc point-spread function.

K22 is the quantum value, J ðdirectÞ
22 is the numerically computed

value for direct imaging, and J ðbÞ
22 is that for binary SPADE

tailored for the sinc function. The vertical axis is normalized with
respect to K22 ¼ π2N=ð3W2Þ.
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VII. TWO-DIMENSIONAL IMAGING

The essential physics remains unchanged when we
consider two-dimensional imaging, and we discuss the
generalization only briefly here; the details are given
elsewhere [43]. The single-photon ket in Eq. (2.3) should
now be expressed as jψ si ¼

R
∞
−∞ dx

R
∞
−∞ dyψ sðx; yÞjx; yi,

where hx; yjx0; y0i ¼ δðx − x0Þδðy − y0Þ and ψ sðx; yÞ is a
two-dimensional wave function [29,30]. In terms of a
point-spread function ψðx; yÞ and unknown positions
ðX1; Y1Þ and ðX2; Y2Þ, ψ sðx; yÞ ¼ ψðx − Xs; y − YsÞ, and
we can define the four centroid and separation parameters
as θ1 ¼ ðX1 þ X2Þ=2, θ2 ¼ X2 − X1, θ3 ¼ ðY1 þ Y2Þ=2,
and θ4 ¼ Y2 − Y1. Here, J ðdirectÞ for the estimation of θ2
and θ4 decreases to zero when the sources are close, and
Rayleigh’s curse still exists for direct imaging [9,10]. On
the other hand, the quantum Fisher information matrix, to
be reported in Ref. [43], again shows no sign of Rayleigh’s
curse for two-dimensional separation estimation.
For SPADE, we can use the two-dimensional Hermite-

Gaussian basis [37]. Assuming a Gaussian point-spread
function and a known centroid, it is straightforward to show
that a measurement of each photon in the Hermite-Gaussian
basis with mode indices q and p obeys a two-variable
Poisson distribution, and the classical Fisher information
with respect to θ2 and θ4 remains a constant, free of
Rayleigh’s curse, similar to the one-dimensional case. For
other point-spread functions, such as the Airy disk [2,28],
binary SPADE with a matching mode profile can estimate
the separation without Rayleigh’s curse for small separa-
tions in the same way as the one-dimensional case, but
information about the direction of the separation is lost. To
obtain directional information, one needs to discriminate at
least some of the higher-order modes in different directions.
A quadratic-index optical fiber can support two-

dimensional Hermite-Gaussian modes, while a weakly
guiding step-index fiber also has modes closely resembling
the Hermite-Gaussian modes [38]. A complication arises
for cylindrically symmetric fibers, as modes with the same
total order qþ p will have a degenerate propagation
constant, causing multiple modes to satisfy the same
phase-matching conditions in grating or evanescent cou-
pling and preventing discrimination of modes with the
same order. The net result is that directional information is
compromised. One solution is to turn the point-spread
function into an elliptic one with asymmetric widths and
use an elliptic fiber to break the degeneracy.

VIII. CONCLUSION

We have presented two important results in this paper:
the fundamental quantum limit to locating two incoherent
optical point sources and the SPADE measurement
schemes for quantum-optimal separation estimation.
Our quantum bound sets the ultimate limit to localization
precision in accordance with the fundamental laws of

quantum mechanics, while SPADE can extract the full
information offered by quantum mechanics concerning
the separation parameter via linear photonics. The pro-
posed SPADE schemes work well for close sources with
significant overlap in their wave functions, avoiding
Rayleigh’s curse and the divergent error that plagues
direct imaging. The computational simplicity of the
estimators is an additional advantage. Foreseeable appli-
cations include binary-star astrometry [15,16,44] and
single-molecule imaging [7], either as a replacement of
techniques based on fluorescence resonant energy transfer
[12,45] or as an enhancement of localization microscopy
[5–7,10,12] to provide complementary information about
close pairs of fluorophores.
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APPENDIX A: QUANTUM-IMAGING
LITERATURE REVIEW

Helstrom pioneered the application of his quantum
estimation and detection bounds to optical-imaging prob-
lems [17,22,55], focusing on coherent and thermal sources.
In particular, the now well-known expression for the shot-
noise-limited localization error for one classical source can
be found in Ref. [55]; similar expressions in the context of
direct imaging were later reported in Refs. [35,36,56]. For
more recent studies of quantum metrology for coherent-
state or nonclassical-state imaging, see, for example,
Refs. [57–59]. For studies on the use of squeezed light
for single-object localization, see, for example,
Refs. [19,60–63]. None of these studies considered the
problem of locating two close incoherent sources.
The standard quantummodel of paraxial imaging and the

use of nonclassical light for that purpose were proposed by
Yuen and Shapiro [29]. This topic has been further
investigated most notably by Kolobov and co-workers
[64,65], who focused on coherent or squeezed light,
homodyne detection, and field fluctuations. Such models
are irrelevant to incoherent sources such as stars and
fluorophores, for which the mean field is zero and photon
counting is the more relevant method to minimize vacuum
noise; to quote Helstrom [66],

With such incoherently illuminated or radiating objects, it
is not the field of the light that is of interest, for that field is
best described as a random process having zero mean
value and a most erratic spatiotemporal variation. Rather
it is the mean-square value of the field, averaged over
many cycles of the dominant temporal frequency, that
characterizes the object in the most informative way.

Subsequent work by Kolobov and co-workers [67–70]
considered the squeezing and measurement of the eigenm-
odes of an imaging system for image-reconstruction super-
resolution. Again, these studies focused on coherent or
squeezed light only. The “Rayleigh resolution limit”
mentioned by many of these papers is a misnomer, as
the resolution limit for coherent imaging should be attrib-
uted to Abbe, while Rayleigh’s criterion is defined for two
incoherent sources [1,2] and is ill suited to coherent
imaging [71]. Moreover, the imaging-system eigenmodes
they studied have no relation to the spatial modes we
propose for the two-source localization problem, and they
did not use the more rigorous framework of statistical
parameter estimation.
We can consider the schemes proposed in Refs. [72–79] as

another class of superresolution imaging protocols, which
require coherent or nonclassical sources and multiphoton
coincidence measurements and do not consider statistical
inference. It is well known in statistical optics that a
multiphoton coincidence measurement, such as the obsolete
Hanbury Brown-Twiss interferometry, fundamentally has a

much poorer signal-to-noise ratio than amplitude interfer-
ometry because multiphoton coincidence events are rare for
thermal optical sources [23,27]. The actual statistical reso-
lution of this class of protocols is thus questionable,
especially for weak optical sources, without further proofs
in the context of inference accuracy. In recent years, there has
also been significant interest in quantum lithography [80–83]
and ghost imaging [81,84–86], although their applications
are clearly different from our purpose and will not be
elaborated here.
The relative neglect of incoherent sources in the

quantum-imaging literature, despite their obvious impor-
tance, may be due to a lack of appreciation that quantum
mechanics can be relevant to such highly classical light.
Our work thus showcases quantummetrology as a powerful
tool to discover the ultimate performance of sensing and
imaging even for classical sources, providing not only
rigorous quantum limits but also pleasant surprises for one
of the most important applications in optics.

APPENDIX B: QUANTUM OPTICS: DERIVATION
OF EQS. (2.1)–(2.3)

Define α ¼ ðα1;…;αJÞ⊤ as a column vector of complex
field amplitudes for J optical spatial modes on the image
plane and jαi as a multimode coherent state with amplitude
α. Any quantum state can be expressed as

ρ ¼
Z

DαΦðαÞjαihαj; ðB1Þ

where ΦðαÞ is the Sudarshan-Glauber representation and
Dα is an appropriate measure [24]. For thermal sources, it
is standard [24] to assume Φ to be a zero-mean complex
Gaussian given by

ΦðαÞ ¼ 1

detðπΓÞ expð−α
†Γ−1αÞ; ðB2Þ

where α† ¼ ðα�1;…; α�JÞ denotes the complex transpose
of α,

Γ ¼ Eðαα†Þ ðB3Þ
is the image-plane mutual coherence matrix, and E½fðαÞ�≡R
DαΦðαÞfðαÞ denotes the expectation of any function f

with respect to theΦ distribution. Writing the coherent state
in terms of a superposition of Fock states and applying the
Gaussian moment theorem [24] to Eq. (B1), we can express
ρ as the incoherent mixture

ρ ¼
X∞
n¼0

πnρn; n≡X
j

nj; ðB4Þ

where πn is the probability of having n total photons in the
state and ρn is an n-photon multimode Fock state.
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At optical frequencies or beyond, it is standard
[13,14,23–27] to assume that, within the short coherence
time of a source, the average photon number arriving at the
imaging device is much smaller than 1. We make the same
assumption for two sources, viz.,

ϵ≡X
j

trρa†jaj ¼ Eðα†αÞ ¼
X
j

Γjj ≪ 1; ðB5Þ

where tr denotes the operator trace, aj is the annihilation
operator for the jth mode, and a†j is the creation operator.
For example, a star with sunlike temperature 6000 K emits
about 10−2 photons on average per mode at wavelength
500 nm, while the limited fraction of the coherence area
captured by the telescope aperture further reduces the
received photon number [23]. In microscopy, a typical
fluorophore emits < 107 photons per second [31] with
coherence time < 50 fs [12], leading to ϵ < 10−6 for two
sources. The zero-photon probability given by

π0 ¼ Eðe−α†αÞ ¼ 1 − ϵþOðϵ2Þ ðB6Þ

is then the highest, the one-photon probability given by

π1 ¼ Eðe−α†αα†αÞ ¼ ϵþOðϵ2Þ ðB7Þ
is ϵ to the first order, and the multiphoton probability

X∞
n¼2

πn ¼ 1 − π0 − π1 ¼ Oðϵ2Þ ðB8Þ

is in the second order, leading to Eq. (2.1). As the vacuum
state provides no information and multiphoton events are
rare, we focus on the one-photon state ρ1. This focus
also makes our formalism applicable to inefficient single-
photon emitters, which may have non-Poissonian multi-
photon statistics but rare multiphoton events, and electron
microscopy [9].
The negligence of the Oðϵ2Þ multiphoton probability

leads to a Poisson photon-counting distribution [23], which
ignores bunching or antibunching effects but remains an
excellent empirical model for both astronomical optical
sources [13,14,23–25] and fluorophores [10,12,31–33] by
virtue of the ϵ ≪ 1 condition. To quote Mandel [25],

The light from these sources is always so weak that
nξ=T ≪ 1 [ϵ in our terminology] and the degeneracy is
unlikely to be detected in measurements on a single
beam. The situation is, of course, improved when
correlation measurements are undertaken on two or
more coherent beams (Hanbury Brown and Twiss
1956), since these measurements single out the degen-
erate photons (Mandel 1958). Even so it is unlikely that
any faint stars could be studied in this way.

Similarly, Goodman states that [23]

If the count degeneracy parameter [ϵ in our terminology]
is much less than 1, it is highly probable that there will be
either zero or one count in each separate coherence
interval of the incident classical wave. In such a case the
classical intensity fluctuations have a negligible “bunch-
ing” effect on the photo-events, for (with high probability)
the light is simply too weak to generate multiple events in
a single coherence cell. If negligible bunching of the
events takes place, the count statistics will be indistin-
guishable from those produced by stabilized single-mode
laser radiation, for which no bunching occurs.

A more recent work by Zmuidzinas [13] also states that

It is well established that the photon counts registered by
the detectors in an optical instrument follow statistically
independent Poisson distributions, so that the fluctua-
tions of the counts in different detectors are uncorrelated.
To be more precise, this situation holds for the case of
thermal emission (from the source, the atmosphere, the
telescope, etc.) in which the mean photon occupation
numbers of the modes incident on the detectors are low,
n ≪ 1 [ϵ in our terminology]. In the high occupancy
limit, n ≫ 1, photon bunching becomes important in that
it changes the counting statistics and can introduce
correlations among the detectors. We will discuss only
the first case, n ≪ 1, which applies to most astronomical
observations at optical and infrared wavelengths.

Define jji ¼ a†j jvaci as the ket with one photon only in
the jth mode. Consider the one-photon matrix elements

hjjρjki ¼ Eðe−α†ααjα�kÞ ¼ Γjk þOðϵ2Þ: ðB9Þ
We can then assume, to the first order of ϵ,

π1 ≈ ϵ; ρ1 ≈
1

ϵ

X
j;k

Γjkjjihkj: ðB10Þ

Similar approximations were also used in Refs. [26,27]. To
derive Γ, let β≡ ðβ1;…; βKÞ⊤ be the field amplitudes for
optical modes on the object plane, and consider the field
propagation rule α ¼ Sβ for a linear optical system, where
S is the field scattering matrix. The image-plane mutual
coherence Γ is then related to the object-plane mutual
coherence matrix ΓðoÞ by

Γ ¼ SΓðoÞS†: ðB11Þ
This propagation rule is a basic principle in both classical
and quantum statistical optics [24].
In the paraxial regime, we can use localized wave-packet

modes as a basis [29,30]. Let u be the position index for a
wave-packet mode on the one-dimensional object plane
and consider two incoherent sources with equal intensities
at positions u ¼ u1 and u ¼ u2. The fields are uncorrelated
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at different points on the object plane, with nonzero
intensities only at the sources. Then

ΓðoÞ
uv ¼ ϵ0δuvðδuu1 þ δuu2Þ; ðB12Þ

where ϵ0 is the average photon number from each source.
On the image plane, the mutual coherence becomes

Γjk ¼ ϵ0ðSju1S�ku1 þ Sju2S
�
ku2

Þ; ðB13Þ
and the average photon number can be expressed as
ϵ ¼ 2ϵ0η, where η≡P

jjSjus j2 is the quantum efficiency
of the imaging system and we have made the reasonable
assumption that the efficiency is the same for both sources.
Equation (B10) can then be expressed as Eq. (2.2) if we
define single-photon kets jψ si≡P

jψðj; usÞjji with nor-
malized wave functions ψðj; usÞ ¼ Sjus=

ffiffiffi
η

p
. Assuming

image-plane wave-packet positions xj ¼ x0 þ jdx, posi-

tion eigenkets jxji ¼ jji= ffiffiffiffiffi
dx

p
, and wave functions

ψ sðxjÞ ¼ ψðj; usÞ=
ffiffiffiffiffi
dx

p
, we arrive at Eq. (2.3) by taking

the continuous-space limit with infinitesimal dx [29,30].

APPENDIX C: QUANTUM METROLOGY:
DERIVATION OF EQ. (3.8)

The quantum Fisher information matrix with respect to
ρ⊗M proposed by Helstrom [17] is defined as

Kμνðρ⊗MÞ ¼ MKμνðρÞ ¼ MRetrLμðρÞLνðρÞρ; ðC1Þ

where LμðρÞ is a symmetric logarithmic derivative (SLD)
of ρ. Writing ρ in its eigenbasis as

ρ ¼
X
j

Djjejihejj; ðC2Þ

LμðρÞ can be expressed as [17,87,88]

LμðρÞ ¼
X

j;k;DjþDk≠0

2

Dj þDk
hejj

∂ρ
∂θμ jekijejihekj: ðC3Þ

Given this definition and Eq. (B4), it can be shown that

KðρÞ ¼
X
n

πnKðρnÞ ≥ π1Kðρ1Þ; ðC4Þ

as each ρn is in an orthogonal subspace. Since the vacuum
state ρ0 ¼ jvacihvacj contains no information and multi-
photon events are rare, the total information will be
dominated by that from the one-photon state ρ1. We
therefore focus on the one-photon component π1Kðρ1Þ
as a tight lower bound on the quantum information and
assume, in the following,

KðρÞ ≈ π1Kðρ1Þ: ðC5Þ

With π1 ≈ ϵ and the probability of multiphoton events
being Oðϵ2Þ according to Eq. (B8), this approximation is
accurate to the first order of ϵ.
To compute the quantum Fisher information matrix

Kðρ1Þ according to Eqs. (C1)–(C3), we first need to
diagonalize the ρ1 in Eqs. (2.2) and (2.3), noting that
the eigenvectors should span the supports of ρ1 and
∂ρ1=∂θμ. The partial derivative of ρ1 with respect to Xμ

can be expressed as

∂ρ1
∂Xμ

¼ ∂D1

∂Xμ
je1ihe1j þ

∂D2

∂Xμ
je2ihe2j

þ
�
D1

∂je1i
∂Xμ

he1j þD2

∂je2i
∂Xμ

he2j þ H:c:

�
; ðC6Þ

where H.c. denotes the Hermitian conjugate. In addition to
the support of ρ1 spanned by je1i and je2i, we also need to
find more eigenvectors that span the support of ∂je1i=∂Xμ

and ∂je2i=∂Xμ.
Assuming that ψμðxÞ ¼ ψðx − XμÞ and the point-spread

function ψðxÞ has an x-independent phase, we can take
ψðxÞ to be real without loss of generality and choose the
following orthonormal set of eigenvectors:

je1i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − δÞp ðjψ1i − jψ2iÞ;

je2i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ δÞp ðjψ1i þ jψ2iÞ;

je3i ¼
1

c3

�
Δkffiffiffi
2

p ðjψ11i þ jψ22iÞ −
γffiffiffiffiffiffiffiffiffiffi
1 − δ

p je1i
�
;

je4i ¼
1

c4

�
Δkffiffiffi
2

p ðjψ11i − jψ22iÞ þ
γffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p je2i
�
; ðC7Þ

where Δk2 and γ are given by Eqs. (3.9) and (3.10),
respectively,

jψ11i≡ 1

Δk

Z
∞

−∞
dx

∂ψðx − X1Þ
∂X1

jxi;

jψ22i≡ 1

Δk

Z
∞

−∞
dx

∂ψðx − X2Þ
∂X2

jxi;

c3 ≡
�
Δk2 þ b2 −

γ2

1 − δ

�
1=2

;

c4 ≡
�
Δk2 − b2 −

γ2

1þ δ

�
1=2

;

b2 ≡
Z

∞

−∞
dx

∂ψðx − X1Þ
∂X1

∂ψðx − X2Þ
∂X2

;

δ≡
Z

∞

−∞
dxψðx − X1Þψðx − X2Þ; ðC8Þ

and the eigenvalues of ρ1 are
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D1 ¼
1 − δ

2
; D2 ¼

1þ δ

2
; D3 ¼ D4 ¼ 0: ðC9Þ

After more algebra, the SLD in Eq. (C3) with respect to the
derivative in Eq. (C6) can be expressed as

LðXÞ
μ ¼

X
j;k

LðXÞ
μ;jkjejihekj ðC10Þ

with a real and symmetric matrixLðXÞ
μ;jk ¼ LðXÞ

μ;kj, the nonzero
and unique elements of which are found to be

LðXÞ
1;11 ¼ −LðXÞ

2;11 ¼
γ

1 − δ
;

LðXÞ
1;12 ¼ LðXÞ

2;12 ¼
γδffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p ;

LðXÞ
1;13 ¼ −LðXÞ

2;13 ¼
c3ffiffiffiffiffiffiffiffiffiffi
1 − δ

p ;

LðXÞ
1;14 ¼ LðXÞ

2;14 ¼
c4ffiffiffiffiffiffiffiffiffiffi
1 − δ

p ;

LðXÞ
1;22 ¼ −LðXÞ

2;22 ¼
−γ

1þ δ
;

LðXÞ
1;23 ¼ LðXÞ

2;23 ¼
c3ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p ;

LðXÞ
1;24 ¼ −LðXÞ

2;24 ¼
c4ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p : ðC11Þ

In terms of the centroid and separation parameters given by
θ1 ¼ ðX1 þ X2Þ=2 and θ2 ¼ X2 − X1, the SLDs become

L1 ¼ LðXÞ
1 þ LðXÞ

2 ; L2 ¼
LðXÞ
2 − LðXÞ

1

2
: ðC12Þ

We can now substitute Eqs. (C9)–(C12) into Eq. (C1) to
compute the quantum Fisher information matrix Kðρ1Þ.
The final result, assuming Mπ1 ≈Mϵ ¼ N, is given by
Eqs. (3.8) with zero off-diagonal terms.

APPENDIX D: UNKNOWN CENTROID AND
MISALIGNMENT

Our analysis of SPADE in Secs. IV and V assumes that
the centroid of the two sources is known exactly and the
device is optimally aligned with the centroid. For
astronomy, it is reasonable to assume that the centroid is
known accurately, as extensive telescopic data on stellar
objects should be readily available and conventional
imaging is accurate in estimating the centroid. Even if
the centroid is unknown, stellar objects usually shine long
enough for one to collect ample prior information before
aligning the SPADE device. For microscopy, however,
biological samples may drift more quickly and fluoro-
phores can bleach, giving little time and few photons for
one to estimate both parameters. One option, to be explored
in future work, is to scan the SPADE device across the
image plane in a manner similar to the operation of a
confocal microscope [12].

Another option, illustrated in Fig. 10, is to split the
optical field by a beam splitter, measure one output port by
direct imaging, and use the centroid estimate to align
SPADE at the other port in a hybrid scheme. As the overall
optical system is linear with photon counting, the output
statistics remain Poisson for ϵ ≪ 1, meaning that the
statistics of the measurements are independent and can
be analyzed separately. The penalty of beam splitting with
the classical sources is simply a reduction of photon
number at each port. With direct imaging offering little
information about θ2 when Rayleigh’s criterion is violated,
the additional information offered by SPADE for a reduced
photon number can still be helpful. The outstanding issues
are then the robustness of SPADE to the misalignment due
to imperfect centroid estimation, and the overhead resour-
ces of photons needed to achieve satisfactory alignment.
Let the center of a SPADE device be θ̌1 and consider

θ1 ≠ θ̌1 due to misalignment. For a Gaussian point-spread
function and the Hermite-Gaussian-basis measurement,
Eq. (4.4) should be generalized to

P1ðqÞ ≈
1

2

�
expð−Q1Þ

Qq
1

q!
þ expð−Q2Þ

Qq
2

q!

�
;

Q1 ≡ 1

4σ2

�
θ̌1 − θ1 þ

θ2
2

�
2

;

Q2 ≡ 1

4σ2

�
θ̌1 − θ1 −

θ2
2

�
2

: ðD1Þ

Define the level of misalignment as

ξ≡ jθ̌1 − θ1j
σ

: ðD2Þ

We treat ξ as a systematic error and θ2 as the parameter
of interest for SPADE. Figure 11 plots the resulting
Fisher information for several levels of misalignment.

FIG. 10. A hybrid measurement scheme that splits the optical
field by a beam splitter, measures one output port by a photon-
counting array, and uses the centroid estimate θ̌1 to align SPADE
at the other port.
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It can be seen that the information degrades with
misalignment, but appreciable enhancements over direct
imaging are still present even if θ2 ≪ σ and the wave-
function overlap is significant, as long as ξ ≪ 1.
Appendix E confirms this conclusion numerically for
finite photon numbers.
To attain a tolerable level of misalignment, θ1 first needs

to be estimated and θ̌1 should be aligned with the estimate.
With conventional imaging, the centroid estimation error
is near optimal and on the order of σ=

ffiffiffiffi
N

p
in terms of the

root-mean-square value, meaning that the number of extra
photons N1 needed to attain ξ is roughly

N1 ∼
1

ξ2
: ðD3Þ

An even more realistic analysis would take θ̌1 to be a
stochastic waveform determined by the centroid measure-
ments and the adaptive alignment control [89].
For binary SPADE, Eqs. (5.1) and (5.2) should be

generalized to

P1ðq ¼ 0Þ ≈ 1

2
½expð−Q1Þ þ expð−Q2Þ�; ðD4Þ

P1ðq > 0Þ ≈ 1 −
1

2
expð−Q1Þ −

1

2
expð−Q2Þ: ðD5Þ

Figure 12 plots the Fisher information for misaligned
binary SPADE, showing a similar degradation behavior
to that in Fig. 11 for nonzero ξ. Significant improvements
over direct imaging are still possible for small separations
and ξ ≪ 1.

For two-parameter estimation, consider the hybrid
scheme in Fig. 10, assuming 50-50 beam splitting and
binary SPADE, for example. For simplicity, assume that the
binary-SPADE output is used only for separation estima-
tion, such that the total information matrix with respect to
θ1 and θ2 remains diagonal. Compared with direct imaging,
the centroid information for the hybrid scheme is halved,
viz.,

J ðhybridÞ
11 ¼ J ðdirectÞ

11

2
; ðD6Þ

but the separation information gained by binary SPADE
can be appreciable, with

J ðhybridÞ
22 ¼ J ðdirectÞ

22

2
þ J ðbÞ

22

2
: ðD7Þ

The net performance of the hybrid scheme can be quanti-
fied in terms of the Cramér-Rao bounds for locating X1 and
X2. For a diagonal information matrix J with respect to θ1
and θ2, the bound on the mean-square error ΣðXÞ of
estimating either X1 ¼ θ1 − θ2=2 or X2 ¼ θ1 þ θ2=2 is
simply

ΣðXÞ
ss ≥

1

J 11

þ 1

4J 22

; s ¼ 1; 2; ðD8Þ

which demonstrates the detrimental effect of small J 22 for
localization. Figure 13 compares the localization bounds
for the hybrid scheme and direct imaging in log-log scale.
For small separations, it can be seen that the increased
separation information in the hybrid scheme more than

FIG. 11. Fisher information for separation estimation with
SPADE with misalignment levels ξ ¼ 0; 0.1;…; 0.5 (solid
curves) and direct imaging (dash-dotted curve). The different
solid curves can be distinguished by their decreasing values with
larger misalignments.

FIG. 12. Fisher information for separation estimation with
binary SPADE with misalignment levels ξ ¼ 0; 0.1;…; 0.5 (solid
curves) and direct imaging (dash-dotted curve). The different
solid curves can be distinguished by their decreasing values with
larger misalignments.
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compensates for the reduced centroid information and
allows localization errors substantially lower than those
for direct imaging. With a higher N1 ¼ N=2, more accurate
centroid information from the imaging port can be used to
reduce the misalignment at the SPADE port, and perfor-
mance converging to the ideal ξ ¼ 0 case in Fig. 13 can be
expected for high N.

APPENDIX E: MONTE CARLO ANALYSIS

To confirm that the classical Cramér-Rao bounds sat-
isfactorily represent the actual performance of SPADE for
finite photon numbers, here we simulate the device output
data numerically, apply maximum-likelihood estimation,
and investigate the resulting error. To refine our error
analysis, we condition our results on the total number of
detected photons L, which is obtained after an experiment,
rather than the average photon number N [8]. It is not
difficult to show that, conditioned on L, the classical and
quantum Fisher information retain their expressions except
that N is replaced by L. The error bounds become

1

J 0ðHGÞ
22

≈
1

K0
22

≈
4σ2

L
: ðE1Þ

It can also be shown that the sufficient statistic
P

qqmq in
the maximum-likelihood estimator for SPADE in Eq. (4.7)
is Poisson with mean LQ, so it is simple to generate
samples of the maximum-likelihood estimates Q̌ML and
θ̌2ML according to Eq. (4.7).
Figure 14 plots the simulated mean-square errors, nor-

malized with respect to Eq. (E1), for several values ofL. It is
intriguing to see that, as θ2=σ → 0, the errors go below the

bounds. This is a well-known statistical phenomenon called
superefficiency [90,91], as the maximum-likelihood estima-
tor here is actually biased for finite samples, and the simple
Cramér-Rao bounds considered here need not apply. In
asymptotic frequentist statistics, superefficiency is not
regarded as an important idea [90] because a superefficient
estimator can beat the Cramér-Rao bound only on a set of
points with zero measure in the asymptotic limit [90,91],
suggesting that any region of superefficiency should shrink
for larger samples, as also shown inFig. 14, and its usefulness
is increasingly limited. A Bayesian version of the Cramér-
Rao bound [11] can also be used to bound the global or
minimax error of any biased or unbiased estimator; the Fisher
information still plays a decisive role in the Bayesian bound
and its significance as a precision measure remains strong in
Bayesian and minimax statistics [92].
For our present purpose, the main point of Fig. 14 is that

the errors remain less than twice the Cramér-Rao bound at
worst and even offer the pleasant surprise of supereffi-
ciency for small separations. The overall closeness of the
errors to the Cramér-Rao bounds supports our use of the
Fisher information to represent the performance of SPADE.
For binary SPADE, the Fisher information conditioned

on L has the same form as Eq. (5.3), and the Cramér-Rao
bound can be expressed as

1

J 0ðbÞ
22

≈
4σ2

L
1 − expð−QÞ
Q expð−QÞ : ðE2Þ

The sufficient statistic m0 in θ̌ðbÞ2ML given by Eq. (5.4) is
binomial and also simple to generate. In case m0 ¼ 0, we

FIG. 13. Cramér-Rao bounds on the mean-square error of
estimating X1 or X2 for a 50-50 hybrid scheme (solid line)
and direct imaging (dash-dotted line). Note that the log-log scale
is used here for clarity, unlike all the other plots in this paper. The
vertical axis is normalized with respect to the error of locating an
isolated source with direct imaging.

FIG. 14. Simulated mean-square errors for SPADE with maxi-
mum-likelihood estimation, conditioned on L detected photons.
Note that the vertical axis is normalized with respect to the
Cramér-Rao bounds 4σ2=L, so the plotted values are the actual
errors magnified by L=ð4σ2Þ. Each error is computed by
averaging 105 simulations, and the lines connecting the data
points are guides for eyes.
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set θ̌2 ¼ 2σ, the maximum of our considered range of θ2.
Figure 15 plots the simulated mean-square errors for binary
SPADE with otherwise the same parameters as those for
Fig. 14. For small θ2=σ, the errors follow very similar
trends as their counterparts in Fig. 14, and for larger θ2=σ,
the errors begin to follow the rising Cramér-Rao bound

according to Eq. (E2). This supports our use of the Fisher
information to represent the performance of binary SPADE.
To investigate the effect of misalignment described in

Appendix D, Fig. 16 plots the simulated errors for binary
SPADE with a misalignment level defined in Eq. (D2)
given by ξ ¼ 0.1. The overhead photon number required to
achieve ξ ¼ 0.1 is N1 ∼ 100 according to Eq. (D3) and
negligible if L ≫ N1. Since ξ is unknown in reality, the
maximum-likelihood estimator used in the simulations
assumes zero misalignment for simplicity. Despite the
model mismatch, the errors remain close to the Cramér-
Rao bound, especially for larger L, and substantially below
the bound for direct imaging.
For a given N, L has a mean Mϵ ¼ N and standard

deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mϵð1 − ϵÞp

≈
ffiffiffiffi
N

p
. This means that the distri-

bution of L becomes increasingly sharp around the mean at
L ¼ N for largeN, and we can expect the performance for a
given L ¼ N to be an increasingly accurate approximation
of the average performance in the given-N, random-L
scenario.
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