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Quasiparticles and collective modes are two fundamental aspects that characterize quantum matter in
addition to its ground-state features. For example, the low-energy physics for Fermi-liquid phase in He-III
is featured not only by fermionic quasiparticles near the chemical potential but also by fruitful collective
modes in the long-wave limit, including several different sound waves that can propagate through it under
different circumstances. On the other hand, it is very difficult for sound waves to be carried by electron
liquid in ordinary metals due to the fact that long-range Coulomb interaction among electrons will generate
a plasmon gap for ordinary electron density oscillation and thus prohibits the propagation of sound waves
through it. In the present paper, we propose a unique type of acoustic collective mode in Weyl semimetals
under magnetic field called chiral zero sound. Chiral zero sound can be stabilized under the so-called
“chiral limit,” where the intravalley scattering time is much shorter than the intervalley one and propagates
only along an external magnetic field for Weyl semimetals with multiple pairs of Weyl points. The sound
velocity of chiral zero sound is proportional to the field strength in the weak field limit, whereas it oscillates
dramatically in the strong field limit, generating an entirely new mechanism for quantum oscillations
through the dynamics of neutral bosonic excitation, which may manifest itself in the thermal conductivity
measurements under magnetic field.
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I. INTRODUCTION on the surface and the negative magnetoresistance [19-23]
caused by the chiral anomaly [1,24-27].

So far, the Weyl semimetal is considered a new topo-
logical state in condensed matter physics only because of
its unique quasiparticle dynamics, which manifests itself in
various transport experiments [19-23]. On the other hand,
the unique collective modes are other types of features that
characterize a new state of matter which is yet to be
revealed for Weyl semimetal systems [18,28—-36]. The most
common collective mode in a liquid system is sound, which
usually requires collisions to propagate. For a neutral Fermi
liquid such as He-1III [37—-40], ordinary sound can exist only
when w7t < 1, where 7 is the lifetime of the quasiparticles.
For a clean system, the low-energy quasiparticle lifetime
approaches infinity with reducing temperature, which pro-
hibits the existence of normal sound modes at low enough
temperature when wz > 1. However, there is a completely
different type of sound that emerges in the above “colli-
sionless region” called zero sound, which is purely gen-
erated by the quantum-mechanical many-body dynamics
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Topological semimetals are unique metallic systems with
a vanishing density of states at the Fermi level [1-11].
Among different topological semimetals, the Weyl semi-
metal [2-5] is the most robust one because it requires no
particular crystalline symmetry to protect it. The low-energy
quasiparticle structure of a Weyl semimetal usually contains
several pairs of Weyl points (WPs), isolated crossing points
in 3D momentum space formed by energy bands without
degeneracy. Near each WP, the surrounding quasiparticles
can be well described by the Weyl equation proposed by
Weyl 90 years ago in the context of particle physics [12]. The
WP provides not only the linear energy dispersion around it,
but more importantly, the “monopole” structure in the Berry
curvature, which makes the dynamics of these Weyl quasi-
particles completely different from free electrons in ordinary
metals or semiconductors and leads to many exotic properties
of the Weyl semimetal, i.e., the Fermi-arc behavior [5,13-18]
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condensed matter, the form functions of zero sound modes
carry irreducible representations (irreps) of the symmetry
group of the particular system. For an electron liquid in a
normal metal, the density oscillation corresponding to the
trivial representation is always governed by the long-range
Coulomb interaction and becomes the well-known plasmon
excitation with a finite gap in the long-wave limit. Thus, zero
sound modes can exist only in high multipolar channels
ascribing to the nontrivial representation of the symmetry
group, within which the residual interactions among the
quasiparticles are positive definite. The above condition
requires a strong and anisotropic residual interaction in
solids, which is difficult to be realized in normal metals.

One of the exotic phenomena of a Weyl semimetal is the
chiral magnetic effect (CME) [24,45-48], where each valley
will contribute a charge current under the external magnetic
field. The “anomalous current” contributed by the CME
from a single WP valley with positive (negative) chirality is
always parallel (antiparallel) to the field direction with its
amplitude being proportional to the particle number of that
particular valley. To be specific, the anomalous current con-
tributed by the vth valley through CME is j¢ = eBy,/
(47%)(u, — ), where y,, and p, denote the chirality and the
imbalanced chemical potential of the vth WP, respectively, p
is the chemical potential at equilibrium, e = F|e| is the
charge of the electronlike (holelike) quasiparticle, and B is
the magnetic field. The above CME immediately causes an
interesting consequence: The particle number imbalance
among different valleys will induce particle transport and
thus make it possible to form a coherent oscillation of the
valley particle numbers over space and time, which is a
completely new type of collective mode induced by the CME.

On the other hand, the most common collective modes in
a charged Fermi-liquid system are plasmons, and for a
Weyl semimetal under a magnetic field, they are such
collective modes where the oscillations of the valley
particle numbers cannot cancel each other and generate
net-charge-density oscillation in real space [28-36]. Since
these modes are coupled to the CME current, the plasmon
frequencies significantly depend on the magnetic field [36].
Following Ref. [36], in this paper we call them ‘“chiral
plasmons” (CPs). In general, each of the CP modes form a
trivial (identity) irrep of the symmetry group. As we discuss
in detail below, among all the CPs, there are only two
branches that are fully gapped (with opposite frequencies),
whereas the other branches are gapless. For the simplest
Weyl semimetal with only a single pair of WPs, the little
group at finite wave vector q contains only an identity
operator under magnetic filed, indicating that all the
electronic collective modes propagating with wave vector
q will generally cause net-charge-density oscillation and
thus belong to different branches of the CP modes.

The situation becomes completely different for a Weyl
semimetal with multiple pairs of WPs. Now we can have
collective “breathing modes” of Fermi surfaces in different
WP valleys so that they oscillate in an antiphase way and

cancel out the net charge oscillation exactly, as illustrated
schematically in Fig. 1(d) for two pairs of WPs. Since these
antiphase modes do not cause any net charge current, the
collective oscillations of the valley charge and valley
current will be completely decoupled from the plasmon
modes, and their dispersion relation remains gapless and
linear in the long-wave limit, which is called “chiral zero
sound” (CZS) in this paper. As we discuss in more detail
below, the CZS modes carry the nontrivial irreps of the
corresponding little group, with which we can figure out
how many CZS modes can exist with the magnetic field
being applied in some particular crystal directions.

In order to clearly describe the physical process in Weyl
semimetal systems, we divide the charge current contributed
by the vth WP valley j, into two parts: the “anomalous
current” j¢ caused by the change of the valley particle number
through the CME and the “normal current” j!! caused by the
deformation of the Fermi surface in the vth valley. For the
general situation, the two types of currents are coupled
together and contribute jointly to both the CP and CME
modes. However, in the present paper, we consider a specific
limit where only the anomalous current can survive, and both
the CP and CZS are purely contributed by the CME. Such a
limit was proposed previously by Son and Yamamoto [24]
requiring the intravalley relaxation time to be much shorter
than the intervalley one, which guarantees that the intravalley
relaxation process is fast enough so that any deformation
of the Fermi surface from its equilibrium shape can be
neglected. In the following, we call this limit the “chiral
limit” and mainly discuss the physics of the CZS under it.

II. BOLTZMANN'S EQUATION METHOD

Let us first introduce the Boltzmann equation in the
chiral limit. The Boltzmann method is valid only in the
semiclassical limit, where wpt < 1, wp < y, and puz > 1.
Here, wp = vp\/eB is the magnetic frequency, vy is the
Fermi velocity, and 7 is the quasiparticle lifetime. (In this
paper, we set 7 =1 and the energy of WP as 0.) In the
semiclassical limit, the level smearing caused by the finite
quasiparticle lifetime is much larger than the Landau-level
splitting, but it is much smaller than the chemical potential;
hence, the Landau-level quantization can be ignored, and
the Fermi surface remains well defined. Therefore, in the
semiclassical limit, the collective dynamics of a Fermi-
liquid system can be described by the quasiparticle dis-
tribution function n,(k,r,7) through the following
Boltzmann equation, where v is the valley index, k is
the momentum, and r is the position of the quasiparticle,

dén,(Kk,r, 1)

a (=F, - O = K, - Dy )on, (k. 1, 1)

+ S[on, (k. r. 1)), (1)

where the first term and second term on the rhs describe
the drifting motion and the scattering process, respectively.
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FIG. 1. Chiral zero sound and chiral plasmon modes in the minimal model with four Weyl points. The symmetry group of the model is
C,, consisting of a twofold rotation axis in the z direction and two mirror planes in the x-z plane and y-z plane, respectively. In (a) and
(d), dashed lines represent the two mirrors, the colored disks represent the Fermi surfaces around the WPs, and the dashed gray circles
represent the Fermi surfaces in equilibrium. Here, the four WPs are labeled by (s, a), with s = =+ the chirality and a = 1, 2 the subvalley
index. (a) The volume of Fermi surfaces as functions of space and time in the chiral plasmon mode, where (s, 1) and (s, 2) are always in
phase, making the mode even under C, rotation. (b),(c) The chiral magnetic currents and quasiparticle densities as functions of space and
time in the chiral plasmon mode. Here, the red and blue lines represent the contributions from the (—, 1) [(—,2)] and (4, 1) [(+,2)]
Fermi surfaces, respectively, and the black lines represent the net current and density. (d) The volume of Fermi surfaces in the chiral zero
sound mode, where (s, 1) and (s, 2) are always out of phase, making the mode odd under C, rotation. (e),(f) The chiral magnetic currents
and quasiparticle densities as functions of space and time in the chiral zero sound mode. The contributions from the (—, 1), (+, 1),
(—,2), and (+, 2) Fermi surfaces are represented by the red solid, blue solid, red dashed, and blue dashed lines, respectively. In the chiral
zero sound mode, both the net current and the net density vanish.

(An explicit derivation of this equation is given in

Appendix A). The time derivatives r, and l'(,, are given
by the equations of motion of the quasiparticles. In the
presence of external field and Berry’s curvature Q,(k),
they can be written as [49,50]

7Kk, = ~0ce, + v, (k) x B + e(d,¢, - B)Q(K),  (2)

v (K)F, =V, (K) +0re, x 2, (K) — e[, (k) -v,(K)|B,  (3)
|

where €,(k) is the quasiparticle energy, v, (k) = dye, (k)
is the quasiparticle velocity, and y,(k,B)=1—-¢B-
Q,(k) is the phase-space volume correction due to the
presence of the Berry curvature [51]. We emphasize that
€,(k) is not the bare band energy but the renormalized
quasiparticle energy due to the presence of the collective
mode. To obtain ¢,(k), we first write the total energy in
terms of n,(k,r, 1),

2

&’k e
Fuat) = By + 3 / Pr / G BRI, . r.1) + / / v ol )on(r. 1)

+Z/d3r/d3k (k B)/d3k/ (K. B)f,,8n, (K, r,1)5n, (K. r,1) (4)
yl/ (2”)3 },I/ ? 3 yl/ ’ vV v » = 14 T ’

(27)
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where the second and third terms are the long-range
Coulomb interaction and the residual short-range inter-
action between the quasiparticles, respectively [52].
Here, €)(k) is the bare energy dispersion for the quasi-
particle, on,(k,r,t) =n(k,r, 1) —ng[ed(k) —u] is the
deviation from Fermi-Dirac distribution, and én(r, ) =
>, [(@k)/(2x)3y, (k. B)n,(k,r,t) is the net charge
density at position r. In general, the short-range interaction
matrix f,, in the above equation should have the full
momentum dependence and be written as f, , (k, k') [52].
However, here we consider the case where the Fermi
surfaces are small enough such that the k dependence in
fu (K, K’) can be omitted. Then, the renormalized quasi-
particle energy is given by the functional derivative of the
total energy as €,(k,r, 1) = 6E./6n,(Kk,r, ). An elabo-
rate study of collective modes in Weyl systems with only
one pair of WPs using the Boltzmann equation can be
found in Ref. [31].

III. THE CHIRAL LIMIT

To introduce the chiral limit, we decompose én(k,r, 1)
into two parts: the part that keeps the quasiparticle number
in each valley unchanged %y(k,r, t) and the part that
changes the valley quasiparticle numbers n, (K, r, ¢). In the
following, we refer to on,(k,r,) as the Fermi-surface
degrees of freedom (d.o.f.) and on,(Kk,r, 1) as the valley
d.o.f. Since the intravalley scattering preserves the quasi-
particle number in each valley, én,(k,r,t) can be relaxed
only through the intervalley scattering. On the other hand,
%D(k,r, t) can be relaxed through both the inter- and
intravalley scattering processes. Therefore, the relaxation
time of on,(k,r, ) is always longer than the relation time
of %y(k, r,t). We can approximate the scattering term as

Slon, (rk, )] = — on,(r.k,1) on,(r.k,1) )

To Ty

As we prove in Appendix E, for the simplest case where
both the inter- and intravalley scattering cross sections
are constants (without k dependence), Eq. (5) is almost
exact, and the valley d.o.f. have the form én,(k,r,) «
on,(r,1)8[e9(k) — u]. Such a k-independent scattering
cross section is a good approximation for a small Fermi
surface. Now we argue that in the chiral limit where
7y < 7,, the Fermi-surface degrees and the valley degrees
are decoupled, and the collective modes are purely con-
tributed by the valley degrees. To zeroth order of 7,

nonzero gﬁy(k, r, ) will be relaxed to zero in an infinitely
short time; hence, the Fermi-surface degrees are always in
equilibrium, i.e., gﬁy(k, r,t) = 0. Therefore, to obtain the
dynamic equation in the chiral limit, we can simply assume
on,(k,r,t) = én,(Kk,r, t). Here we take the trial solution as
on,(k,r, 1) = c,e*=*)5[ed (k) — u], where q and w are

the wave vector and frequency of the corresponding
collective mode, respectively. By substituting this trial
solution and Eqgs. (2) and (3) into Eq. (1), we obtain the
following dynamic equation

i _ e(q ) B) v
(‘”Z)”” = ap,(8) "
2

e(q-B e

+ % %: (fv.l/ + W) My, (6)
where f,(B) is the bare compressibility of the vth valley,
x, = %1 is the chirality, and 5, = ,(B)c, is the imbal-
anced quasiparticle particle number (per unit volume)
for the vth valley. At zero temperature, the bare compress-
ibility is nothing but the density of states at the Fermi level.
In the semiclassical region, there are f3,(0) ~ y?/v3 and
B,(B) = B,(0) ~ % /v3. In the semiclassical limit wg < p,
we have f,(B) = f,(0).

Equation (6) is the key equation of this paper, which
directly leads to both CP and CZS solutions. We put the
rigorous derivation in Appendix B and give only a brief
introduction here in the main text. We can interpret Eq. (6)
as the continuity equation for the quasiparticle number in
the vth valley under the chiral limit, i.e., 9,57, + V- j = 0,
where jg is the CME current contributed by the vth valley.
For simplicity, here we set 7, = o0. i0,1, gives the lhs and
—iV - j¢ gives the rhs of Eq. (6). In the chiral limit, each of
the Weyl valleys can be described by the Fermi-Dirac
distribution functions with time- and valley-dependent
chemical potential y,. Then, the CME current for the
vth valley j¢ can be simply written as j¢ = eBy,/
(47%)(u, — ), where y is the chemical potential in equi-
librium. The above anomalous current j¢ is contributed by
two effects: the change of quasiparticle number and the
modification of the averaged quasiparticle energy in the vth
valley due to the interaction, which correspond to the two
terms on the rhs of Eq. (6), respectively.

In the above analysis, for simplicity, we always neglect
the k dependence in the form of residual interaction among
the quasiparticles, which is a good approximation as long
as all the FSs in such Weyl semimetal systems are small
enough. To generalize our discussion, in Appendix F we
prove that even if we keep k dependent, the valley d.o.f.
on,(k) are still well defined and free of intravalley
scattering, but their form will be modified. Furthermore,
under the chiral limit, the dynamic equation is still given
by Eq. (6), except that f,,, has to be understood as the
“k-averaged” interaction obtained from f, (k. k’). Please
see Appendix F for more details.

To understand more about the chiral limit, we need to
find the upper bound of 7z, below which the zeroth-order
discussion is valid. In Appendix E, we deal with the effect
of finite 7 in the standard second-order perturbation theory.
Here we describe only the main conclusion: Finite 7
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introduces an effective damping term of approximately
7ov%q> for the collective modes. In order to stabilize the
collective modes, the Hermitian part of Eq. (6) must be
larger than the non-Hermitian part, or, equivalently, the
eigenfrequency should be much larger than the damping
rate. Since the gapped CPs are coupled to the Coulomb
interaction, which dominates Eq. (6) in the long-wave
limit, the conditions for the gapped CPs to be stable
are (i) 1/7, < {[e*(q-B)]/(e0q?)} and (i) 7ov3q® <
{[*(q - B)]/(e0q?)}. These two conditions are automati-
cally satisfied in the long-wave limit, and hence, the gapped
CPs are always stable against 7. On the other hand, since
the CZSs and gapless CPs are decoupled from the Coulomb
interaction, as we show in the model below and prove
generically in Appendix B, the conditions for CZSs and
gapless CPs to be stable are (i) Ti < {e(q-B)[1 +p(B)f]/
[#(B)]} and (ii) 7ov7q® < {e(q - B)[1 + 4(B)f]/[3(B)]}.
These two conditions can be satisfied at some ¢ only if

ELaIESILLIONL YRS A BC
T

Ty v%‘ﬂz(B) H4

For simplicity, here we assume isotropic Fermi surfaces
such that f(B) = [u?/(2#%v}.)]. Thus, the upper bound of
79 below which Eq. (6) is valid is given by Eq. (7).

Now let us analyze the (magnetic) point symmetry group
of Eq. (6). Since the wave vector q enters Eq. (6) only
through the q - B term, the symmetry group of Eq. (6) is
much higher than the little group at q. In fact, all the point
group operations or combinations of point group operations
and the time reversal that preserve q - B, B, and f, , will
keep Eq. (6) invariant. We emphasize that q - B is invariant
under proper rotations and time reversal, but it changes
sign under inversion, and B transforms as a vector under
proper rotations, keeps invariant under the inversion, but
changes sign under time reversal. Therefore, only two types
of operations can leave Eq. (6) invariant: proper rotations
with an axis parallel to B and time reversal followed by
twofold proper rotations with an axis perpendicular to B.
In this paper, we denote the group consisting of these
symmetry operations as G.(B), which is either a magnetic
point group or a point group, depending on whether or
not it contains combinations of a point group and the
time-reversal operations. The solutions of Eq. (6) form the
representations for the group G.(B), which can be divided
into two categories: the trivial and nontrivial irreps. It is
then easy to see that the CP solutions belong to the trivial
irreps and the CZS solutions belong to the nontrivial ones.
To be specific, as we prove in Appendix B, the multiplicity
of the trivial irrep or the number of CPs is given by

G G
Neu(B Z' e

and the multiplicity of the nontrivial irreps or the number of
CZSs is given by

B)nG,|
B)lIG,|

(8)

©)

N, CZS

|Gol _ [GollG:(B) n G, |
Z|G0| 0 G.(B)IG,|

where the summation of v will be carried out over all
inequivalent WPs. (Two WPs are equivalent if they are
related by some symmetry operation.) G, is the maximal
(magnetic) point group of the (magnetic) space group, G, is
the subgroup of G, that leaves the vth WP invariant, and |G|
is the number of elements in G. Here we take the Weyl
semimetal TaAs [5] in space group [4;md (#109) as an
example to show the usage of Egs. (8) and (9). Since TaAs
is time-reversal symmetric and the maximal point group
of I14,md is C,,, we obtain Gy = Cy4, + TCy,, where T
represents the time reversal. Totally, there are 24 different
WPs in TaAs, which can be divided into two classes: eight
WPs located at the k, = 0 plane and 16 WPs located off the
k. = 0 plane. The WPs within the same class can be related
by operations in G, and are considered to be equivalent
from a symmetry point of view. The corresponding little
groups that leave the WPs unchanged are G, = {E} and
G, = {E,TC,}, respectively. Therefore, from Eq. (6),
there are 24 independent variables in total leading to the
same number of independent modes. Assuming the mag-
netic field is applied along the C, rotation axis, we obtain
G.(B) = Cy4, and hence, Ncp = 6 and Nz = 18.

As we discuss above, in the semiclassical region we
always have f,(B)—p,(0) ~ (w3/u?)B,(0), which is
derived in detail in Appendix B. Thus, to the leading-
order effect of the magnetic field, we can omit the B
dependence in f,(B). Then, Eq. (6) is in first order of B,
and the corresponding symmetry group becomes higher
than G.(B). This higher symmetry group denoted as G (0)
consists of all the proper rotations, time reversal (if
present), and time reversal followed by proper rotations
(if present) in the original group. Thus, G.(0) is nothing but
the chiral subgroup of the little group at q = 0. Therefore,
under semiclassical approximation, the number of CPs and
CZSs [Egs. (8) and (9)] should be calculated with G.(0)
instead of G.(B).

IV. MINIMAL MODEL FOR CHIRAL ZERO
SOUND

At last, we consider a model Weyl semimetal system
with only two pairs of WPs with point group symmetry Cj,,
as illustrated schematically in Fig. 1. For convenience, we
split the valley index v into a chirality index s = +1 and a
subvalley index a = 1, 2. Under the C, rotation, the (s, 1)
WP and the (s,2) WP transform to each other; under the
M, mirror, the (+, a) WP and the (—, a) WP transform to
each other. Thus, the representation matrices formed by 7,
can be written as D¢, (Cy) =7* ,06° , and Dy, 00 (M) =

12 20 ¢ Where %% and " are Pauh matrices in the

ll(l

chirality space and subvalley space, respectively, and z° and

6" are two-by-two identity matrices. In the following, we
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omit the matrix subscripts for brevity. Without loss of
generality, we choose the form of residual interaction as
f = for%" + f1756° + f,7%* + f37°¢*, where we set
fo2fi£(f2—f3) and fo 2 —f £ (f2 + f3) to ensure
that the interaction is positive semidefinite. The magnetic
field is applied in the z direction. Applying the representa-
tion matrices to Eq. (6), one can easily verify that the C,
symmetry is kept but the M, symmetry is broken. Thus, the
solutions will form the irreps of C,. By diagonalizing
Eq. (6), we obtain two branches of CPs

a)(l*z)(q)+i—i e(q.B)

o, 422p(B) G(a) - &), (10)

where {o(q) = 1+p(B)[fo +f1+2¢*/(e0q*)] and {1 (q) =
B(B)[f> + f3 +2¢*/(epq?)], and two branches of CZSs

i e(q.B)
w34 (q) +T_U — :l:4ﬂ2ﬂ(B) \/.15(2)—7% (11)

where & = 1 + S(B)(fo — f1) and &, = B(B)(f> — f3)-In
the long-wave limit, we have (3(q) —¢3(q) ~[(4€?)/

(e0q®)][1 + B(B)(fo + f1 — f2—f3)], so the CP modes
are gapped and the plasmon frequency is approximately

(12)

e*(q.B) [1+B(B)(fo+f1—fr—f3)
27%q] P(B)ey '

On the other hand, the CZS modes have linear dispersions
along the magnetic field direction with the sound velocity

(B) = /G- (13)

Here we give a rough estimation of the sound velocity for a
typical Weyl semimetal system. For simplicity, we set
f=0,B=10T, u=30meV, vy =2 eVAn!; then we
obtain ¢(B) ~ 0.34 eV AA~' ~'5 x 10* m/s.

The eigenvectors of the two CP modes are

77(172) = [)“1,2((1)7 _17 /?’],Z(q)9 -1 ]T’ (14)

where 21 5(q) = [{o(q) £ v/¢5(q) = 7(q)]/¢1(q), and the
eigenvectors of the two CZS modes are

]1(3'4> = [23’4, —1, _13.49 1]T3 (15)

where 34 = (& + /& —&1)/&. In the above expres-
sions, the bases of the # vector are ordered as
(s,a) = (+,1), (=, 1), (+,2), (=,2). y'?) are invariant
under C, and hence form the trivial irrep, whereas 7% will
change sign under C, and hence form the nontrivial irrep.
The CP mode ;(!) and the CZS mode 1) are schematically
plotted in Figs. 1(a) and 1(d), respectively. We can find
clearly from Fig. 1 that the CP is such a mode that the
quasiparticle densities with the same chirality oscillate with

the same phase, while the quasiparticle densities with the
opposite chiralities oscillate with opposite phases. Since the
CME current from the vth valley j, is proportional to y,7,,
a net current oscillation will be generated by the CP mode,
which couples to the long-range Coulomb interaction and
leads to a finite plasmon frequency in the long-wavelength
limit. In contrast, in the CZS mode the valley densities with
the same chirality oscillate with opposite phases, leading to
the exact cancellation of CME currents from differen
valleys. Therefore, the CZS mode will be completely
decoupled from the charge dynamics and can keep its
acoustic nature in the long-wavelength limit.

It is insightful to compare the possibility to have zero
sound modes in ordinary metals and Weyl semimetals
under magnetic field. The collective modes for the former
metals have been discussed in detail in Ref. [43]. Using the
description developed above for an ordinary metal, all the
collective modes can be derived from the dynamics of
Fermi-surface d.o.f. 6n,(r, K, t), which describe the small
deviation of the quasiparticle occupation at the Fermi
surface. For a system with approximately the sphere
symmetry, it can be expanded using the sphere harmonics
Y1m(0y, @i ). Therefore, the longitudinal mode is formed by
the proper linear combination of the sphere harmonics with
m = 0 and becomes the plasmon mode. The transverse
modes are described by the sphere harmonics with m # 0.
Among them, the channel with m = +1 will be absorbed
into the Maxwell equation to describe the possible elec-
trical magnetic wave, which contains no solution for
frequency below the plasmon edge. Therefore, the only
possible channels to have zero sound modes in an ordinary
metal system are the channels with |m| > 2, provided that
the effective residual interaction in these channels is
positive definite to survive the Landau damping. These
conditions are difficult to fulfill and so is zero sound in
ordinary metal. Therefore, for Weyl semimetals under
magnetic field, the CME provides a unique mechanism
to stabilize the CZS with any form of residual interaction
that does not cause instability. At least in the chiral limit,
the dynamics of CZS involves only the anomalous current
but not the normal current, and hence, it is free of Landau
damping.

V. THERMAL PROPERTIES OF CHIRAL ZERO
SOUND

The existence of the CP and CZS in the chiral limit leads
to several interesting physical phenomena under the exter-
nal magnetic field. Here we introduce two of them. The first
one is the CZS contribution to the specific heat. The CZS
modes can be viewed as a set of 1D collective modes
dispersing only along the magnetic field. As we derive
in Appendix G, the specific heat contributed by the CZS
is k(B,T) ~k3TA?/[6¢(B)] for temperature T < Oy,
where O¢zg = ¢(B)A/kg is the corresponding Debye tem-
perature for the CZS, ¢(B) is the sound velocity [Eq. (13)],
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FIG. 2. (a) The specific heat (per unit volume) in the four-WPs

model is plotted as a function of temperature. The specific heat is
plotted in the unit of kA3, where kj is Boltzmann’s constant, and
A is the cutoff in the momentum integral. The temperature 7T is
plotted in units of Debye temperature for the CZS mode,
Oczs = ¢(B)A/kp, where ¢(B) is the speed of the CZS.
(b) The thermal conductivity in the four-WPs model is plotted
as a function of magnetic field. Here, S, (1) is the area enclosed
by the extreme circle on the Fermi surface that is perpendicular to
the magnetic field. The parameters are set as wp = 0.2y,
kgT = 1/(275) = 0.001y, and T/Oczs = 10 and 0.1 for the
blue line and red line, respectively.

A is the momentum space cutoff, and kg is the Boltzmann
constant, while in the high-temperature region (7 > O¢ys),
the specific heat is x(B, T) ~ kzgA/(37*). To be specific,
in Fig. 2(a) we plot the specific heat as a function of
temperature using some typical parameters for the Weyl
semimetal systems. Although such a temperature depend-
ence is similar to the quasiparticle contribution to the
specific heat, the two can be distinguished from each
other by their different field dependence. Another unusual
property caused by the CZS is the thermal conductivity.
Since the CZS disperses only along the field direction, the
thermal current carried by the CZS modes can flow only
along this direction. As a result, the thermal conductivity
tensor contributed by the CZS modes has only one nonzero
entry. As we derive in Appendix G, if the magnetic field
is applied along the z direction, the thermal conductivity
is given by of} = 8;.6; .7,(T)c*(B)x(B, T), where 7,(T) is
the relaxation time for the CZS excitations. In the weak
field and low-temperature region (rowp K 1, T < Oc¢yg),
as k(B,T) x T/c(B) and ¢(B) « B, we obtain ¢! o TB.
In the weak field and high-temperature region (rywp < 1,
T > Ocys), as k~ const, we obtain ¢\ « B2.

In order to discuss the specific heat and thermal
conductivity in the strong field region (zywp 2 1), we need
to rederive the dynamic equation under the strong field,
where the electronic states are already Landau levels. In
this case, since the compressibility oscillates with the field,
as a consequence, the velocity of the CZS as well as the
thermal conductivity, in general, should also oscillate with
the field. Here we focus only on the case wp < p so that
there are still a large number of Landau levels below the
chemical potential. As we introduce in Appendix H, it turns
out that the dynamic equation has the same form of Eq. (6),

except that the field dependence of the compressibility is
modified. As we calculate in Appendix I, the compress-
ibility in the strong field can be expressed as f(B) =
AO(B) + pV(B) + - - -, where the f2))(B) terms oscillate
as the Ith harmonics of 1/B. Under finite temperature,
the ratio between the first and zeroth components is
approximately

— H
BI(B) _wp exp(—7 1) cos Sexs () 7 (16)
BO(B)” u sinch(27? ) eB ’

B

where sinch(x) = (e* — e™)/(2x), and S (1) is the area
enclosed by the extreme circle (perpendicular to B) on the
Fermi surface. Here we assume ¢B > 0 and 4 > 0. Because
of Egs. (6) and (13), the oscillation in #(B) will lead to the
oscillation in the sound velocity of the CZS. Substituting
Eq. (16) for Eq. (13), we obtain the first-order oscillation of
the sound velocity as

()
I\ R
&—&p(B)
where ¢(%)(B) is the nonoscillating component of the sound
velocity. As both the specific heat and thermal conductivity
are functions of the sound velocity, the oscillation in
the velocity leads to oscillations in the specific heat and
thermal conductivity as well. As an example, in Fig. 2(b)
we plot the thermal conductivity as a function of magnetic
field. In normal metals, the thermal conductivity is mainly
contributed by electrons and acoustic phonons. The phonon
part couples only indirectly to the magnetic field and
usually does not change much with the field. Therefore,
the part that oscillates with the field is mainly contributed
by the free electrons in the normal metal, which satisfies the
Wiedemann-Frantz law. As we introduce above, for the
Weyl semimetals in the chiral limit, since the CZS can
propagate only along the magnetic field, the thermal
conductivity along the field will be contributed by both
the CZS and free electrons leading to the dramatic violation
of the Wiedemann-Frantz law, which is absent for thermal
conductivity along the perpendicular direction. Early theo-
retical studies of the electronic contribution to the thermal
conductivity in Weyl semimetal without considering the
CZS modes obtain the B? dependence for the thermal
conductivity under magnetic field [53], which is quite
different from the contribution from the CZS introduced
above. Such a field-dependent violation of the Wiedemann-
Frantz law has already been seen in the thermal conduc-
tivity measurement of TaAs under a magnetic field,
indicating the possible contribution from the CZS [54].
We note that for realistic systems which are not deeply in
the chiral limit, the CZS will also acquire nonzero velocity
along the transverse direction of the magnetic field as well,
which is caused by the accompanying normal current
during the oscillation. Therefore, the CZS or the gapless
CP can also contribute to the thermal conductivity along the
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transverse direction, but the effect should be much
less by orders of magnitude than that of the longitudinal
direction.

VI. DISCUSSION AND SUMMARY

The above-mentioned quantum oscillations in specific
heat and thermal conductivity can be viewed as strong
evidence for the existence of the CZS but still indirect.
It will be more convincing if we can also have direct ways
to measure it. In this regard, the direct ultrasonic meas-
urement of these materials under magnetic field and low
temperature may be difficult but worth trying. Another
possible experiment is inelastic neutron-scattering spec-
trum. Although the corresponding scattering cross section
for electrons may be very small, the existence of the CZS
can still be inferred from the spectrum of certain phonon
modes, which have the same symmetry representation as
the CZS and can hybridize with it when they intersect
each other at some particular wave vector to form the
“polariton mode”.

In summary, we propose that an exotic collective mode,
the chiral zero sound, can exist in a Weyl semimetal under
magnetic field with the chiral limit, where the intervalley
scattering time is much longer than the intravalley one.
The CZS can propagate along the external magnetic field
with its velocity being proportional to the field strength in
the weak field limit and oscillating in the strong field. The
CZS can lead to several interesting phenomena, among
which the giant quantum oscillation in thermal conductivity
is the most striking and can be viewed as “smoking gun”
evidence for the existence of it.
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APPENDIX A: BOLTZMANN’S EQUATION
AND COLLECTIVE MODES

Let us first derive the Boltzmann equation, which applies
when the Landau-level splitting, i.e., wp = vpVeB, is
smaller than the imaginary part of the quasiparticle self-
energy and the chemical potential . The semiclassical
equations of motion of the Weyl fermion are [49,50]

k = —d,e(k,r,1) + ei x B, (A1)

i = Oge(k,r, 1) — k x Q(k), (A2)

where e = —|e| (|e|) is the electronlike (holelike) quasi-
particle, and

Q(k) = —i(Ou(k)| x |Oxu(k)) (A3)

is the Berry curvature. The decoupled equations are

y(k.B)k = —d,e(k.r. 1) + edye(k.r,1) x B

+ e[0ce(k, 1, 1) - B]Q(k), (A4)
y(k,B)r = dye(k,r, 1) + Ope(k,r, 1) x Q(k)
—eloke(k,r, 1) - Q(k)|B, (A5)
where
y(k,B)=1-¢eB-Q(k) (A6)

is the phase-space measure. Now we denote the distribution
function over phase space as p(k,r, ), and due to particle
number conservation, we have

p(K +dik,r + dit, t + dt) (1 + d1dy -k + d1d, - ¥)d*kd’r
= p(k.r,1)dkd°r, (A7)

and hence,

OI%P(KWH[(6k‘k)+k-ak+ar.f+f.ar]
x p(k,r, 1)
= gp(k, r.1) 4 Oy - [kp(k,r,0)] + O, - [Ep(k, 1, 1)].
(A8)

Here we neglect the scattering term in Boltzmann’s
equation.

From now on, we assume there are a few valleys and
label the quantities in different valleys with a subscript v.
For each valley, we introduce a weighted distribution
function n,(k,r,7) = p,(k,r,1)/y(k), then the multivalley
Boltzmann equation is given by

0=7,(k,B) %m(k, r,t) + {0, (k,r,1)

+ edge, (k,r, 1) x B+ e[ope, (K, 1, 7) - B]Q, (k) }

-Okny(k,r, 1) + {0ke,(k,r, 1) + Ope, (K, T, 1)

x Q, (k) —e[oe,(k,r, 1) - Q,(K)|B} - Opn, (K, 1, 1),
(A9)

where, again, the scattering is neglected. In deriving
Eq. (A9), we make use of the relations 9, [y, (k,B)r,] =0

and 9y - [y, (k, B)k,] = 0. Because of Egs. (A4) and (A5),
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these two relations are satisfied as long as (i) k is not at the
Weyl point, where the semiclassical method does not apply,
and (ii) 0, - dxe(k,r,1) =0, which is automatically satisfied
in our approximation for quasiparticle energy [Eq. (A13)].

|

total
+z/ds [ 85 e [ 2

where the second and third terms denote, respectively, the
long-range Coulomb and residual short-range interaction
among the quasiparticles around the WPs. Here,

nele) (k) = 4]

is the deviation of distribution from equilibrium, ny(¢) =
1/{1 + exp[—(¢)/(kgT)]} is the Fermi-Dirac distribution,

&M”ZZ;/é§“mb“h”) (A12)

on,(k,r, 1) =n,(k,r, 1) — (A11)

is the charge density at position r and time ¢, and f,,/ is a
real matrix due to the Hermitian condition of the Hamil-
tonian. The k dependence of f,,, is neglected since we
consider the case where the Fermi surfaces are very small
compared to the Brillouin zone. The quasiparticle energy
can then be derived as the functional derivation of the total
energy

d3k/
cubor) =) + 3 / o (K B)on, (K.x.1)

(A13)
J

+eq(r,1),

0= 7, (k. B)osn, (k)

+{q.vy<k)—eq.B[vy(k>.g(k)}}[an( )+ 8l — ek Z/‘“‘/ (fw

—ie[v, (k) x B| - 9y 6n,(k),

= Oed(k) and &7 (e) = =0, np(e).

where v, (k)

totlerZ/d*/ )ka O(K)dn, (K., 1) +

In the presence of the collective mode, the single-particle
energy €,(k,r, 1) should be determined self-consistently.
With quasiparticle excitation, the total energy is a func-
tional of the distribution function [52]

//d%rd%’e()'r_ q on(r,1)én(r’, 1)

B)f, o6n,(k.r t)on, (K r 1), (A10)

where ¢ is the scalar potential determined by the Poisson
equation

< sn(r,1).

—2 —
Oro(r, 1) o

(Al14)

Now we assume the deviation from equilibrium takes the
form of the plane wave

on,(k,r, 1) = on, (k)e!lar=—o1), (A15)

Following this definition, we can rewrite the quasiparticle

energy as
dSk/ 2
0+ [ o (1 2ep)

< yy (k' B)on, (k')e’

e, (k,r 1) =

(qr- a)t)

(A16)
The equation of motion to first order of én,(k) is

given by

- >n (K. B)on, (k)

(A17)

For convenience, we replace the 3D variable k in Eq. (A17) with an energy ¢ and a 2D wave vector ¢ on the energy
surface. The integration over k in the vth valley can be rewritten as

y 1
/d3k:/d€/d26,
/ e V(e o)

(A18)

where [, means ¢ takes a value on the 2D surface with fixed energy e. Apparently, the solution of Eq. (A17) takes

the form
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6, (K) = —Denp(c = w)on, (o), (A19)
where ¢ takes a value on the Fermi surface. Integrating the energy, Eq. (A17) becomes
0 7.(0.B) wén, ()
v, (o)
e* \ rv(¢'.B)
+{q-V,(6) —eq-B[v,(6)-Q, {5% + / (fmy/—f——)”iény/ o’
{4-%,(0) — eq - B[¥,(0) - @, (0)]} > | G o+ o) T @)
—ie[V,(6) x B] - Oyon,(6), (A20)
where 9,(6) =v,(6)/|v,(c)| and 5,(B) :/ d*6 y,(6.B) _ dp, (B4)
g (27)* [v(e)]  dpu

(A21)

In Eq. (A20), all the quantities are defined on the Fermi
surfaces, so we omit the energy dependence of these
quantities; e.g., v,(6) is shorthand for v, (u, 6).

APPENDIX B: THE CHIRAL LIMIT

We can decompose dn into two parts: the first part on
changes particle numbers in different valleys, and the

second part on preserves the particle number in each valley
but deform the shape of Fermi surface in each valley. We

refer to on as the valley d.o.f. and én as the Fermi-surface
d.o.f. In the general case, these two d.o.f. are strongly
coupled. However, as we argue below, in the chiral limit,
the dynamics of these two d.o.f. is decoupled. In the
presence of a scattering term, on in general damps with
time, but the valley degrees and the Fermi-surface degrees
can have different relaxation times. We denote the relax-

ation time of én as 7,, whereas the relaxation time of én is

7,. Then the time derivative term in Eq. (A20) should be
replaced by

w6, (6) > <a)+é>ﬁy(6) + <w+1i0>3;,,(6). (B1)

The chiral limit refers to the case where 7 is much smaller
7,, 1.€.,

T
D «.
Ty

(B2)
This limit can be achieved when the intravalley scat-
tering is much stronger than the intervalley scattering. In
Appendix E, we discuss the relaxation times contributed by
impurity scattering. In the simple case in Appendix E, én,
is defined as

d*s y,(6,B)
n= i 7 o, o).

27)3 v, (o6

(B3)

where

is the compressibility of the vth valley, and p, is total
particle density of the vth valley. Then, Eq. (A20) can be
rewritten as

oo (o)« (o))

=+{q-V,(6) —eq-B[V,(c) - Q,(0)]}

x [5nu(c> + Z (f :

o )i,
_ie[d,(0) x

€oq
B] . 8k5l’l”(6).

In the following, we study the physics in zeroth order of

7o and leave the discussion on the finite 7 effect for

Appendix E. To zeroth order of 7, the Fermi-surface d.o.f.

(BS)

are always in thermal equilibrium, i.e., 6n,(6) = 0, and any
deviation from equilibrium will be immediately killed by
the strong scattering. By integrating ¢ into Eq. (B5), we get
a generalized eigenvalue equation

i B e(q-B)
(w - Tv>)m1u  4n%B,(B) v
e e*
—_— . B / — /o
t12 (q )E, (f +€Oq2>m

14

(B6)

Here, y, = =£1 is the chirality of the vth valley, and 7, =
B,(B)dn, is the disequilibrium quasiparticle number in the
vth valley. In deriving Eq. (B6), we apply

/dchfl,(c) -Q,(06) = /a’S -Q,(6) = 2my,. (B7)

Now let us discuss the symmetry of Eq. (B6).
Apparently, Eq. (B6) has a higher symmetry than the little
group of q: It contains all the symmetries that preserve the
chiralities of WPs and the direction of magnetic field. The
direction of q is irrelevant to the symmetry. This is because
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in the chiral limit, the electric field proportional to q enters
the equation only through the q - B term and thus couples
only to the chiral d.o.f. Therefore, finite q breaks only the
symmetries changing the chiralities. In the following, we
denote the symmetry group of Eq. (B6) as G.(B). We
emphasize that some antiunitary symmetry, like time
reversal followed by a crystalline symmetry, can also keep
the chiralities and the magnetic field invariant. And, since
fu 1s a real matrix, these antiunitary symmetries act on
Eq. (B6) as unitary operators. The explicit representation
matrix of all these symmetries is given in Eq. (B9).

It should be noticed that, to leading order of magnetic
field, i.e., setting f,(B) = $,(0), Eq. (B6) even has a
symmetry higher than G.(B): The magnetic field enters
the equation only through term q - B; thus, the direction
of magnetic field becomes irrelevant to the symmetry.
We denote this higher symmetry group as G.(0), which
consists of all the symmetries of the zero field system that
do not change chirality.

The solutions of Eq. (B6) must form irreps of G.(B). As
we show in the next two sections, the trivial irreps of G.(B)
always couple to the charge-density oscillation, and thus,
we call these modes forming trivial irreps CPs. As we
prove, only two of the CPs are gapped, whereas other CPs
are gapless in the long-wave limit. On the other hand, all
the nontrivial irreps are decoupled from density oscillation,
so we call them the CZSs. Now let us calculate the number
of trivial irreps in the solution to Eq. (B6). We first consider
a set of symmetry-related WPs in the inner Brillouin zone,
and one of them has the little group Gy,. We denote the
maximal (magnetic) point group of the space group as G,
then each symmetry-related WP can be represented by a
coset representative of Gy/Gy,

The representation formed by the valley degrees is given by

1 if gh' € hGy,
Vg € Gy, Dy (g) = { (B9)
0 else,
Gol/|Gwl, € Gy,
TrD(g) _ { | 0|/| W\ g w (BIO)
07 g ¢ GW‘

Now we reduce D to irreps of G.(B). The number of trivial
irreps is given by

1
G.®)], 2, P =

9€G.(B)

|GollG(B) N G|
G.(B)]|Gwl

(B11)

Therefore, for a system with a few sets of nonequivalent
WPs, the number of CP modes and CZS modes are given by

B)nG,|
\GI

and

|Gol _ IGollG (B)nG,|
Nezs(B) = ; (B13)
Z Gl (B)[|G. |
respectively. Here, v sums over all inequivalent WPs, and G,
is the little group of the vth WP.

APPENDIX C: CZS

If n, is not a trivial irrep of G.(B), then there must be
>, 1, =0, implying that it does not cause any charge-
density oscillation. Thus, for nontrivial irreps, we can omit
the Coulomb term, and the corresponding modes are the
CZSs. Now let us solve the equation of motion for the CZS.
Notice that the matrix on the rhs of Eq. (B6) is real and
symmetric, so we diagonalize it as

1
'ﬁ za:ou,ala 01/,a ’

where 3(B) is the averaged f,(B), O is an orthogonal
matrix, and the 4,’s are dimensionless numbers. Applying
the transformation

1

fv,z/ +m5yv

(C1)

(€2)

= ZOv,anla s
a

we can rewrite Eq. (B6) as
i
_EO 0,/,:— B)A,n,. (C3
(CO + Tv> - v.aXvVv.a ’1” 4 (q ) alla ( )

Applying the transformation

1 1
Boa = ——=0,.0,0,0 —F—, Z = ﬂa 21’ Cc4
, Z T OvattsOva =0 e =l (C4)
we get a regular eigenvalue problem
En// _ e(q ) B) i (CS)

 4nB(B) (0 + 1) T

where E has the symmetry of G.(B). The dispersion of the
CZS is given by

0czs,(q) + L <la-B) B)

o " ap(B)E, - Nezs(B).

(Co)

Here, &, is the nth eigenvalue of E.

It should be noticed that E is real and symmetric (such
that the £,’s are real) only if all 4,’s are positive. Thus, the
number of CZS modes is given by Eq. (B13) only if
Eq. (C1) is positive definite. Otherwise, only irreps where
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all A,’s are positive correspond to physically observable
modes. The irreps having negative 4,’s in general have
complex £ and so are not stable.

APPENDIX D: CP

For the trivial irreps, in general we have ), 7, # 0.
Therefore, the trivial irreps contribute to density oscillation,
|

and thus, the Coulomb term must be considered. However,

s [e?/(eyq?)] is a rank-one operator, in the long-wave
limit, there should be only one channel that responds to
Coulomb interaction. To separate this channel, we define
the projection operator P, ,, = (1/Ny), where Ny, is the
number of WPs, and divide the terms on the rhs of Eq. (B6)
into four components:

o+ ] =[] 7+ [ )7+ 2+ [ )

#2(s+ ] o+ o+ [ )7

(D1)

Here, [e?/(eyq?)] represents the matrix where every element is [e?/(eyq?)], {1/[B(B)} represents the diagonal matrix
{1/[B,(B)]}6,,, and Q =1 — P, where I is the identity matrix. We apply an orthogonal transformation V =1+ § — ST
where S = PSQ, to remove the mixing term between the P and Q subspaces. To second order of ¢, we find that

5=~y (7 ) Jo 0w

and

Using the fact >, Vo x Vs = 1,6, + O(¢?

(D2)

]+ ] )2 = (el -+ ] )+ o+ ] Jor o 0
), we can rewrite Eq. (B6) as

(D4)

o e Sl o+ )l ) -

To solve this generalized eigenvalue equation, we apply
the technique used in Appendix C: diagonalizing the matrix
on the rhs and transforming the equation to a regular
eigenvalue problem. Let us write the matrix on the right-
hand side as {1/[B(B)]} >, 0,.24,0, .. Applying the
transformation

I 1
ad — ;\/—l—aoy,aﬂﬁzou,a’ 77

a

= \/ZZ Ou,anw

(D5)
we get a regular eigenvalue problem
= e(q ) B) 1"
T BB+ ) (D)
The frequencies of the CP modes are then given by
. B
Wcppy + = M, (D7)

7, 4r’B(B)E,(q)

|

where the £,’s are eigenvalues of Z. Now let us analyze the
spectrum of E. For convenience, we set O,; as the
eigenvector of P, so the corresponding eigenvalue is

e NW 1 3 B(B)
j'1 - €0q2 ﬂ( ) NWDZD/( v,z/ﬂ(B) +ﬂb(B) 51/,1/)

+ O(q?),

(D8)

which is singular in the limit q — 0. Then, due to
Eq. (D12), the E matrix takes the form

= (0 o o
where
C1a = Ela a=273..., (D10)
and
5 =, a,d =2,3 (D11)
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are submatrices of Z. We emphasize that for a > 2, 1, is not
singular. Thus, in the limit ¢ — 0, E" approaches a constant
matrix, whereas {; , ~ |q|. Therefore, by diagonalizing =’

we can rewrite E as

0 algl cldq
el & o 2

where the &’s are eigenvalues of Z/, and U is some
orthogonal matrix. Now we prove that one of the &/,_, 5 is
zero. We denote the diagonal matrix o, ,y, as [y]. Then,
the projected [y] matrix in Q subspace is Q[y]Q = [y]-
Ply] — [x]P. Apparently, 1, = 1 and 5, = y, are two zero
eigenvectors of Q[y]Q, wherein 7, = 1 is in subspace P,
whereas 77, = y, is in subspace Q. As &' is equivalent to
Q[x]Q up to an invertible transformation, &' has one zero
eigenvalue in the Q subspace. Therefore, one of the &/,_, 5
is zero. Here we choose &, = 0. In the limit ¢ — 0, we have
the E eigenvalues as

$i(q) = —&(q) =

& (q) +O(q?),

c2llal+ O(q?).  (D13)

n = 3, ...,NCP(B).

&ilq) = (D14)

Therefore, due to Eq. (D18), n =1, 2 correspond to the
gapped CP modes, whereas n = 3, ..., Ncp(B) correspond
to the gapless CP modes. The low-energy behavior of the
gapless CPs is very similar with the CZSs: Both of them
have a linear dispersion in the limit @ — 0. However, a vital
difference is that gapless CPs are coupled to gapped CPs
through the c,>3 terms in Eq. (D12), whereas the CZSs are
not. As a result, the dispersions of gapless and gapped CPs
form anticrossings, whereas the dispersions of CZSs and
gapped CPs form symmetry-protected crossings.

Here we give a simplified method to calculate the gapped
CP frequency. Since the gapped CP is driven by the
Coulomb interaction, for simplicity, in this method we
omit f,,, and 1/z,. From Eq. (B6), we get

B 1=(q-B)
" B Blo— 5 B) ed Z’“’ (D13)
and thus,
/5' (B)

Supposing @ is a constant in the limit q — 0, we have

To zeroth order of q, we need keep only the first two terms
in the above equation. The first term must vanish due to the
no-go theorem of Weyl semimetals [55,56], which says
> ,x, = 0. Thus, we have

wcp,1.2<q - 0)=

L e? q-B| 1 Z 1
a2 o 2= p,(B)
where 4 = q/|q|.

APPENDIX E: FINITE INTRAVALLEY
SCATTERING

In this Appendix, we solve Eq. (BS) to first order of 7,
and justify the chiral limit approximation using second-
order perturbation theory. First, let us derive 7, and 7,

B) <4%q~13)2 (jq ) (329 B)! >
z s R D17
= (L 17
|
Thus, the scattering term is given by
d B
Z/ 27163)/'”‘7/6 )Wu,,/(c,c’)
x 61, (¢') = 51, ()]
<D18) d2 / ' B
05 — iy =m) [ s TS o, ) o, (o)
d*c’ B
+le/ 27:63)/IDVG 28 5, )~ om, (o)
(E2)
We introduce the quasiparticle d.o.f.
oo, =L [ Lo nOB) o6 E)

explicitly in terms of the scattering cross section. We model
the scattering cross section as

Wy,z/ (6’ G/) = 5L/J/WO + (1 - 51/,1/)W1' (El)

p.(B) J (2z)*|v, (. B)]

and n,(6) = &n,(6) — on,
ten as

. Then, Eq. (E2) can be rewrit-
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S[”D(G)] = (WO - WI)[ﬂD(B)é_nu - ﬂD(B)(SI’l

( Wl)ﬁl/(

(WO:BL/ + WIZIBU )
V#v

Defining
1
P = wop,(B) + leﬂu (B), (ES)
g Vv
1
T_v = leﬂu» (E6)
we can rewrite the scattering term as
Slén, (6)] = bn,(0) on, Zﬁ n,. (E7)
v - o, 1 v

The first term relaxes the deformation of the Fermi surfaces
that do not change the quasiparticle number in each valley,
the second term relaxes the quasiparticle number in each
valley, and the last term is feedback from the change
of the total quasiparticle number. Because the scattering
term is elastic, the total quasiparticle number on the Fermi
surface should be a constant under the scattering. One can
confirm this by observing >, [[(d*6)/(27)*][y,(c.B)/
v, (6, B)|]S[n,(o)] = 0. For simplicity, in the following we
neglect the v dependence in 7 ,; i.e., we set 7y, = 7.

For simplicity, here we consider isotropic Fermi surfa-
ces, where |v,(6)|, f,(6), Q,(6) - ,(6) do not depend on
6, and 7,(6,B) = 1. According to Eq. (B5), to leading
order of 7, we get the én,(6) part as

(@+7) 3
4”2(q B)

Now we look at the leading-order effect of 7, on the CZS
modes. For a specific branch of the CZS, Eq. (E8) gives

on,(6) = —itolq - v, (o)) +0(75).  (E8)

5;1/1/(6) = _iTO [q : VU(G)} n, + 0(7(2))’ (E9)

_)( v

p(B)¢
where £ is the corresponding eigenvalue of the E matrix
[Eq. (C4)]. Substituting it back into Eq. (B5) and integrat-

ing o, we get
i __. e e(q-B)
<w N T1)>)(yrlp S 5 v * 4”2ﬂv(B) v

e e?
— . B / !y
t12 (q-B)> (f +€0q2)f7y

VFJ/)Z}

v

(E10)

6)] + WIZWD/(B)%Z/ - ﬂv’(B)5nv(6>]
+ leﬂl/

ony —éon,) WIZ/J,/ (B)SZ
(6) - (wlzﬂum))ws) S (BB (4)
I
where
1 d*c 1
{(q : VF,L/)Z} = B(B) / (27,[)3 ‘VZ,(G)| [q : Vu(c)}z' (Ell)

Apparently, finite 7, introduces a non-Hermitian term in the
dynamic equation of #. This term leads to a damping rate
proportional to 7yq>v%/&. Therefore, for zero sound to be
stable, the following relation should be satisfied:

eB 22
ebq > 7 ‘1 F

ps ¢

Considering the intervalley scattering, the following rela-
tion should also be satisfied:

(E12)

B 1
2q >— (E13)
pE
The above two inequalities are equivalent to
2 2
3 ”—2 < g << —w—f, (E14)
T,V 0 ToUF H
which have solutions only if
4
9 @ 1
f 3 (E15)

Equation (E15) gives the upper limit of 7, above which the
CZS modes become unstable. It should be noticed that 1/¢&
is of the order of 1 + 3(B)|f].

Perturbation theory for gapless CP modes is similar to
the perturbation theory for the CZS modes, and the stable
condition of the gapless CP modes is also given by
Eq. (E15). Now we consider the gapped CP modes. For
the positive branch of the gapped CP, the frequency of
which is denoted as wcp, Eq. (E8) gives

WcpXy
1= (4-B)

Following the above analysis, we find this term leads
to a damping rate proportional to B(B)(qug)(towcp)/
eB ~ (qup)(towcp)(u*/w?). Thus, for the gapped CP to
be stable, there should be

g’gu = —iTo{(’\l : Vu(c)] n, + O(T(Z)) (E16)
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2
Ty K —— .

El7
qup @ (E17)

Therefore, the CP modes in the long-wave limit are always
stable against the intravalley scattering.

APPENDIX F: k-DEPENDENT SCATTERING
AND INTERACTION

In this section, we consider the k dependence in the
scattering cross section and residual short-range interac-
tion. We show that the dynamic equations (6) and (B6) are
still correct in the chiral limit, except that the parameters
should be modified.

1. Elastic scattering conserving the
renormalized energy

We emphasize that it is the renormalized quasiparticle
energy, other than the bare quasiparticle energy, that is
conserved in the scattering process. This effect is not
considered in Appendixes A-E. As we explain below,
|

(k) = = A,(0) = ¢, (k

Z/dz o (fw

when the short-range interaction f, ,(k,k’) is k indepen-
dent, this effect can be neglected safely. However, when
fo(k,Kk") becomes k dependent, it is crucial to consider
this effect to obtain the correct dynamic equation.

In the presence of a k-dependent interaction, the renor-
malized quasiparticle energy in Eq. (A16) is modified to

o e
=0+ 3 [ G5 (ot + )
<1 K B)on (K). (F1)

Now we neglect the r and ¢ dependence in én, (k) because
the scattering process has a much shorter length scale and
timescale than the collective mode. Here we omit the plane-
wave factor /@7 for simplicity. Changing k to the
variable ¢, 6 and writing n,(k) as n,(e,6) = ng(e — u) +
5(e — u)én,(6) (as we introduce in Appendix A), we can
write the correction to the quasiparticle energies of the
quasiparticles on the Fermi surface as

62 yl/(k/’ B) ’
¢)+ W) —|Vl,/(o")| on, (o). (F2)

We require the renormalized quasiparticle energy to be conserved in the scattering process. Thus, the scattering term is

modified to

Z //de d*c’ yr(c ])3|) W,

To linear order of én,(c), we obtain

-3 ff G en

(0.6')5le + A,(0) — €' = Ay (6)][ny (€, 6")

(0,6")5(e

—n(eo).  (F3)

—€)[6(¢' — u)ony(6') — 6(e — u)on,(o)]

2 e s y| O W (0.0 e + A, (0) = Ay (0") = ] = nple = )}

(¢)]

d26/ 7.(¢, B ,
=se-nY [ G T Vet

2. The valley degrees of freedom

In Appendix B, we decompose 6n,(6) into two parts:

the valley d.o.f. 6n,(6) and the Fermi-surface d.o.f. 6n,(6).
In Appendix E, we show that if the short-range interaction
and the scattering cross section are k independent, on,(c)
is a constant for each valley [Eq. (E3)]. In the following,
we show that with k-dependent interaction and scattering,
the valley d.o.f. are still well defined but their form is
modified.

)6ny(6') + A, (6') = 6n,(6) — A, (0)]. (F4)

First, we decompose the scattering cross section into an
intravalley component and an intervalley component

W,u(0.6) = 5,, W (6.6') + (1-5,,) W) (6.6
(F5)

Correspondingly, we then decompose the scattering term
into an intravalley term S©) and an intervalley term S(!)

Here, we are interested only in S
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Olon0)] = [ G W (0. ) + 8 () o (0) = 8, o). (F6)

The valley d.o.f. are undamped under the intravalley scattering. The following condition is sufficient and necessary for
on,(6) to be undamped under arbitrary intravalley scattering

)+ 8u(0) = )+ Y [ 55 (o0 + ) T ) < . ¥)

[
where a, is some constant. It is direct to see that when fis =~ We decompose the short-range interaction into a

independent of o, Eq. (E3) satisfies Eq. (F7). k-independent part f and a k-dependent part 5f,
We expand the valley d.o.f. on a set of basis functions
fu,z/(c’ G/) = fv.z/ + 5fv,t/ (67 G/)' (Fl 1)
= anhua(s)' (Fg)

Then, the basis functions subject to Eq. (F9) can be solved

For k-independent f, we can simply set b, (6) = 8,4, such by series expansion in order of 5f. We take the trial solution

that for arbitrary c¢,, Eq. (F7) is satisfied. For k-dependent

f, we require h,, to satisfy hyo(6) = 8,4 + Z i, (F12)
d*c’ vy (k. B)
hua(0) + Z / fuv(o,6") + where (") is in mth order of §f. Substituting Eq. (F12) for
(2n)? g’/ |vu(e)] :
Eq. (F9), we obtain
X hu (1(6/) - Auav (Fg)
d*s’ vy, (¢, B
m+1 71/ (m)
where A, is a matrix, such that for arbitrary c,, Eq. (F7) is Z / 27)3 |v, (o 5f vw(0.0 )hv a’
satisfied, and a, is given as
m=20,1,2..., (F13)
a, = ZCQAW. (F10)
a where h£?) = §,, and
|
d*¢’' y,(¢',B) e’ = ()
=5 - +— |6y h) (") ). F14
b=t 3 [ GO (55 (s o)) (F14)

We can properly choose fwr such that

/(d26 },ZI(G’ B)/ d26/ ]/D(G,,B) <5fu,z/<6’6/) +Z/ dZG// yy 6” B 5f1/z/’(6 [} )5fz/' /(GN, G/) + > :0

2z)* v(e)| J (27)* vy ()] (27)° v (e”)]
(F15)
Then, due to Egs. (F13) and (F15), there are
d*c y,(c,B) -
/Wmhm(“) = 8,aP,(B) (F16)
and
2
Ava = 51/(1 + <_v,a + E:?)ﬂa(B) <F17)

To be specific, we can expand f,, that fulfills Eq. (F15) in orders of f as
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F=f0+7® 4. (F18)
where
(1) _ 1 d’6 y,(6,B) [ d°¢’ y,(c',B)
= g ] e d @ ()
and
-2 1 d*s y,(6,B) [ d°¢’ y,(¢',B)
fuw ~ pu.(B)B,(B )/(2;:)3 v, (o) /(2,,)3 vy (')
2 I "
(S [ e o) = 0t o) 11, (F20)

3. Dynamic equation

Now we study the dynamic equation of the valley d.o.f. We first look at the scattering term. Since dn,(6) =
on,(6) + on,(6) and S = SO 4+ S, where S is contributed by intravalley scattering [Eq. (F6)] and SV is contributed
by intervalley scattering, the total scattering term decomposes into four terms

Sin,(6)] = S [6m, ()] + SV[Bn, (6)] + SO o1, (6)] + SV [6m, (0)]. (F21)

In the last subsection, we prove that S [6n,(¢)] = 0. Now we make a relaxation-time approximation for the other three
terms

SWibn,(6)] ~ — , (F22)

506n,(6)] + 5" 6n, ()] ~ — (F23)

In the chiral limit, we have S > S() and so 7, < 7,.
Following the derivation in Appendix A, we obtain the linearized Boltzmann equation with k-dependent short-range
interaction as

={q-9,(6) - eq- B[¥,(5) - Q,(0)]}[6n,(0) + A,(6)] - ie[¥,(0) x B] - [on,(6) + A,(6)], (F24)

where A, (6) is defined in Eq. (F2). To zeroth order of 7,, we have
5”1/( = 6_ chlhl/(l (FZS)

where h,,(6) are the bases introduced in the last subsection. Because of Eq. (F7), én,(6) + A,(6) is a constant a,, and due
to Egs. (F10) and (F17), Eq. (F24) can be written as

7,(c.B) (w

[v.(0)]

v

+ L), (0) = (a-3,(0) - ea- B (0)- 2, (o)) |, + > (7o + S )put®ic ] 29

Integrating ¢ on both sides of this equation and applying Eq. (F16), we obtain
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i
L e > (Fu 4 )ﬂy B | (F27)
We introduce the variable 5, = f,(B)c,, and then we obtain
(o= iy + o 2o e
I
which is of the same form as Eq. (B6). N O 9.(q.T, tl_(ﬁilO)(q’ r.?) ’
APPENDIX G: THERMODYNAMIC PROPERTY (G5)

OF CHIRAL ZERO SOUND

We treat the CZS modes as bosonic quasiparticle
excitations. For each branch of CZS modes w,(q), we
assign a distribution function g,(q, r, ¢), and in equilibrium
it is just the Bose-Einstein distribution, i.e.,

1

@,(q)

exp( T )—1 , (G

(g, v, 1) =

where kp is the Boltzmann constant and 7 is the temper-
ature. Here we drop the “CZS” subscript for brevity. In the
following, we assume the magnetic field is applied along
the z direction, so the dispersion is w,(q) = ¢,q..

First let us calculate the specific heat per unit volume

Icnqzl

V=32 G -
Z /A dg, N> — q2 (c,q. 1

N v kpT ) 4sinh? s2i

2kyT
= xulT) (G2)
3 cnN/ (kpT)
kT dx
T) = kpA3 [ -2 —
0 (T) = ks (A) “
—c, N/ (kgT)
A/ (kgT)? = x* &
. (G3
8 4x preer)

where A ~ 1/ay is the cutoff of ¢, ay is a lattice constant,
and «,, is the specific heat contributed by the nth branch of
the CZS. In the two limits ¢, A > kgT and ¢, A <K kzT, we
have

kgT
. (T) _ kBA3 123 A CnA > kBT, (G4)
" kpA g, o\ < kgT.

Now let us calculate the thermal conductivity. For an
inhomogeneous system, the distribution function satisfies
the Boltzmann equation

where 7,(T) is the relaxation time for the CZS excitations.
At low temperature, the relaxation should be proportional
to 7,. In the presence of a temperature gradient, the first-
order stationary solution reads

59s(q,) = g(a.v) — g\ (q, 1) =
1
" w,(q)

—Ts (T) (Cnaz T)

. G6)
2 3 &),,( ) (
kT 4sinh” 2 %
The thermal current is given by
- / o, (@)e,59,(.7)
laj<a (2
2
1
Z / ¢,0.T) 2 () o
lal<a (2 kpT? 4sinh? (‘2’,”( ¥
(G7)
Therefore, the thermal conductivity is
Gth] = 6i,15,i,zTS(T)ZC%LKn(T) (GS)

APPENDIX H: STRONG MAGNETIC FIELD
AND FINITE TEMPERATURE

The above derivations are based on Boltzmann’s equa-
tion, which is valid only if wgry < 1, wp < u. Thus, it is
still unknown whether the CP and CZS modes exist in the
case wgty 2 1, wp < u. Here we refer to this case as the
strong field case. In this case, the Landau levels are formed,
and there are many Landau levels under the chemical
potential. Therefore, the system should be described by
distribution functions on the Landau levels. Here we
expand this distribution function as an equilibrium part
and a small deviation from equilibrium

n, (k.a.t) = nrle)(k. ) — g

+ 8rled(k.a) — ulon, (a)e’ @0 (HL)

021053-18



HEAR THE SOUND OF WEYL FERMIONS ...

PHYS. REV. X 9, 021053 (2019)

Here, k is the momentum along the magnetic field, « is
the Landau-level index, €J(k,a) are the Landau levels,
noled (k,a) — | = <lpkal//ka> is the occupation number in

equilibrium, and §,(e) = —9,ny(€e). We assume the Landau
levels as [57]

uk + v\/k* +2eBa, a>0,

uk + yvk, a=0,

uk — v\/k* +2eBla|, a <0,

where |u| < |v| such that the WP is type I [11]. In the
presence of scattering Eq. (E1), we can write the spectrum
function as [58]

(k. a) = (H2)

7 [e)(k.a) —u— o’ +1/(27))*

Ale) (k. a), (H3)

where 7, is the quasiparticle lifetime [Eq. (ES)]. Therefore,
the occupation number is given by

1
= | do——FA(e, w), H4
nle) = [dop Ao
and its derivative is given by
1/(2ksT)
= 714 . H
ore) = [ o A (0

Similar to the weak field case, we decompose én,(a) as a
valley degree

(5 3x | 3w A1) —lon (@) (1)
and a Fermi-surface degree
on, (@) = on, (a) ~ 3m,. (H7)
where
eB [ dk 0
Rl BB CICU R

is the compressibility at finite temperature. Here we assume
that eB > 0. Then, the kinetic equation of collective modes
can be written as

oricdib) = | (w+ 2o, + (0o a)

= brled(k.) - ula - v.(a)
fonte + 32 (4 55 Jtmion |

We define the disequilibrium quasiparticle number in the
vth valley as i, = 8,(B)én,. Then, to zeroth order of 7,
integrating k and summing over a, we get

i _e(q-B) e(q-B)
(“Z)’“’“_ 42p,8) " " ar

XZ(fuu'+ )’71/’

which has the exact form as Eq. (B6). It should be noticed
that due to Eq. (H2), only the zeroth Landau level
contributes to the integral on the rhs. One can easily verify
that the leading-order effect of 7, is introducing an effective
damping rate, and the stable condition for the CZS and CP
modes is still given by Eqgs. (E15) and (E17), respectively.

(H9)

(H10)

APPENDIX I: QUANTUM OSCILLATION IN
COMPRESSIBILITY

After the Landau levels are formed, the compressibility
at finite temperature is given by

dk
B =Y F@.  F@ =5 [ 5 aldeo
(1)
Here we assume u > 0. Using the Poisson equation, we

get [42]

B,(B) = F(0) — EF(O*) —i—;F (0%) + ZF

a=

1 (&)
=F(0)-=F(0")+ [ daF(a)
20+

daF (a)e® e, (12)

+ 20 i

=1

0\8

We define
p0(B) = F0) =5 FO0) + [ daFla) (13
0

as the nonoscillating component and
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I>1 (1)

as the oscillating components. ﬂ,(,o)(B) is just the com-
pressibility in the weak field limit [Eq. (B4)]. Now let us

calculate ﬂy) (B). We use the relation
Su(e. k)

a = 2B _¢v( ) (15)

where S, is the area enclosed by the fixed-energy circle in
the k plane. ¢(e, k) includes the Maslov index plus the
Berry phase. For linear isotropic WPs, we always have
¢,(e,k) =0, and so in the following, we omit ¢, (e, k).
Expanding S, (¢, k) as

2
S, (k) LIS e ko)n (16)

S —
eX.l/(e) +2 8k2 .

we then have

B dk
B (B) = E)te— da / == exp(i2zla)d;[ed (k. ) — y]

d exv€+laSZ k_kex2

/ /dk Ses(€) o <2 (Sexs () 7 gt ) >5T(e—,u). (17)
de 2neB
Applying the Gaussian integral formula [*_exp[(i/2)ax*|dx = [(2zi)/al?, we get
1
(1) 1 8251/ 1 2 dSex,z/( ) Sex 1/(6) T
() (B) = % — ! 2l 221 i s (e — ), I

pB) =9 s de(‘az& . 27¢B de vy LAC (18)

where we assume [(9°S,)/(0k*)] < 0. Substituting Eq. (H5) into the above equation, we get

1

/)’ %—/de/dw(‘akz

1/(2kgT) 1

1 2 dSexzz(e) exv( ) T
s 2 —
o 27reB> de P <l " reB 21eB 4

1/2T0

. 19
1+ cosh(z2) 7 (e — pu — w)* + 1/(279)? 1)
Using the contour integral in the upper half plane of €, we get
() 1 0°S, 1 - dSex ., (€) o Sex St o+ 2,0) T
V(B)=R— [ do| 2xl —i—
pu(B) 473 w( ‘ ok? |, 2neB de  |eepiariif(2n) P\ 2reB "4
1/(2kgT
% M_ (110)
1+ coshkg%
We approximate Su., {u + @ + [/ (250)]} a5 Sux, (1) + {[dSexs (0)]/ (du)}Hw + [i/ (220)]}, then we have
2 1
(l) gﬁidsexy( ) i 0°S, 1 2 _dSex,u(ﬂ) ! ) lSex,u(/u)_ T
b B) RS — o2 |, 2zeB) P du 2eBry) TP\ 2neB T4
dS&:xb 0]
/d 1 expli )_’ié (I11)
kpT 1+ cosh’s '

Now we need to calculate the integral on the second line of the above equation. We denote this integral as /. We choose the
contour —co — 00 — 00 + 27 —» —o0 + i2x — —oo, and then we have

ds kyTl
{1 — exp <—2n‘“';—’”(”)3—8>] I =4z
I e

dSex.l/ (:u) kB Tl

exp <_7[MM>’ (112)

du eB du eB
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and thus,

2
= , (113)
sinch(dSe:l;(” ) zhs T
where sinch(x) = (e* — e™)/(2x). Therefore, we get
dSCX.l/(ﬂ) l
1 dS S 1\ exp(= =4 mp, S
ﬂIEZ) (B) N ex,u(/’l) <l‘ 21/ ) 2 ( - dll( ; ZkB (;) oS (27[1 CX,D(M) _ f) <H4)
47 du Ok |y, 2meB sinch(efj—'ﬂ”” %) 2reB 4

For an isotropic Fermi surface, where ¢ = vp|k| and
S(e, k) = n[(e/vp)? — k?], the first-order oscillation is

given by
PR
ﬂ(U(B)NL/@eXP( 2”m§210) Os<Sex,u(ﬂ)_z>
v 27 vy sinch(2ﬂ2’%8§f) B 4
(115)
and
_ H
BIB) oy ST (Seli) 7Y gy
pO(B) M sinch(2z> 4T B4/

B
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