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Quasiparticles and collective modes are two fundamental aspects that characterize quantum matter in
addition to its ground-state features. For example, the low-energy physics for Fermi-liquid phase in He-III
is featured not only by fermionic quasiparticles near the chemical potential but also by fruitful collective
modes in the long-wave limit, including several different sound waves that can propagate through it under
different circumstances. On the other hand, it is very difficult for sound waves to be carried by electron
liquid in ordinary metals due to the fact that long-range Coulomb interaction among electrons will generate
a plasmon gap for ordinary electron density oscillation and thus prohibits the propagation of sound waves
through it. In the present paper, we propose a unique type of acoustic collective mode in Weyl semimetals
under magnetic field called chiral zero sound. Chiral zero sound can be stabilized under the so-called
“chiral limit,” where the intravalley scattering time is much shorter than the intervalley one and propagates
only along an external magnetic field for Weyl semimetals with multiple pairs of Weyl points. The sound
velocity of chiral zero sound is proportional to the field strength in the weak field limit, whereas it oscillates
dramatically in the strong field limit, generating an entirely new mechanism for quantum oscillations
through the dynamics of neutral bosonic excitation, which may manifest itself in the thermal conductivity
measurements under magnetic field.
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I. INTRODUCTION

Topological semimetals are unique metallic systems with
a vanishing density of states at the Fermi level [1–11].
Among different topological semimetals, the Weyl semi-
metal [2–5] is the most robust one because it requires no
particular crystalline symmetry to protect it. The low-energy
quasiparticle structure of a Weyl semimetal usually contains
several pairs of Weyl points (WPs), isolated crossing points
in 3D momentum space formed by energy bands without
degeneracy. Near each WP, the surrounding quasiparticles
can be well described by the Weyl equation proposed by
Weyl 90 years ago in the context of particle physics [12]. The
WP provides not only the linear energy dispersion around it,
but more importantly, the “monopole” structure in the Berry
curvature, which makes the dynamics of these Weyl quasi-
particles completely different from free electrons in ordinary
metals or semiconductors and leads tomany exotic properties
of theWeyl semimetal, i.e., the Fermi-arc behavior [5,13–18]

on the surface and the negative magnetoresistance [19–23]
caused by the chiral anomaly [1,24–27].
So far, the Weyl semimetal is considered a new topo-

logical state in condensed matter physics only because of
its unique quasiparticle dynamics, which manifests itself in
various transport experiments [19–23]. On the other hand,
the unique collective modes are other types of features that
characterize a new state of matter which is yet to be
revealed for Weyl semimetal systems [18,28–36]. The most
common collective mode in a liquid system is sound, which
usually requires collisions to propagate. For a neutral Fermi
liquid such as He-III [37–40], ordinary sound can exist only
when ωτ ≪ 1, where τ is the lifetime of the quasiparticles.
For a clean system, the low-energy quasiparticle lifetime
approaches infinity with reducing temperature, which pro-
hibits the existence of normal sound modes at low enough
temperature when ωτ ≫ 1. However, there is a completely
different type of sound that emerges in the above “colli-
sionless region” called zero sound, which is purely gen-
erated by the quantum-mechanical many-body dynamics
under the clean limit [37,41–44]. In a typical Fermi-liquid
system, zero sound can be simply viewed as the deforma-
tion of the Fermi surface that oscillates and propagates in
the system with the “restoration force” provided by the
residual interaction among the quasiparticles around the
Fermi surface. Like other types of elementary excitations in
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condensed matter, the form functions of zero sound modes
carry irreducible representations (irreps) of the symmetry
group of the particular system. For an electron liquid in a
normal metal, the density oscillation corresponding to the
trivial representation is always governed by the long-range
Coulomb interaction and becomes the well-known plasmon
excitation with a finite gap in the long-wave limit. Thus, zero
sound modes can exist only in high multipolar channels
ascribing to the nontrivial representation of the symmetry
group, within which the residual interactions among the
quasiparticles are positive definite. The above condition
requires a strong and anisotropic residual interaction in
solids, which is difficult to be realized in normal metals.
One of the exotic phenomena of a Weyl semimetal is the

chiral magnetic effect (CME) [24,45–48], where each valley
will contribute a charge current under the external magnetic
field. The “anomalous current” contributed by the CME
from a single WP valley with positive (negative) chirality is
always parallel (antiparallel) to the field direction with its
amplitude being proportional to the particle number of that
particular valley. To be specific, the anomalous current con-
tributed by the νth valley through CME is jaν ¼ eBχν=
ð4π2Þðμν − μÞ, where χu and μν denote the chirality and the
imbalanced chemical potential of the νth WP, respectively, μ
is the chemical potential at equilibrium, e ¼∓jej is the
charge of the electronlike (holelike) quasiparticle, and B is
the magnetic field. The above CME immediately causes an
interesting consequence: The particle number imbalance
among different valleys will induce particle transport and
thus make it possible to form a coherent oscillation of the
valley particle numbers over space and time, which is a
completely new type of collectivemode induced by theCME.
On the other hand, the most common collective modes in

a charged Fermi-liquid system are plasmons, and for a
Weyl semimetal under a magnetic field, they are such
collective modes where the oscillations of the valley
particle numbers cannot cancel each other and generate
net-charge-density oscillation in real space [28–36]. Since
these modes are coupled to the CME current, the plasmon
frequencies significantly depend on the magnetic field [36].
Following Ref. [36], in this paper we call them “chiral
plasmons” (CPs). In general, each of the CP modes form a
trivial (identity) irrep of the symmetry group. As we discuss
in detail below, among all the CPs, there are only two
branches that are fully gapped (with opposite frequencies),
whereas the other branches are gapless. For the simplest
Weyl semimetal with only a single pair of WPs, the little
group at finite wave vector q contains only an identity
operator under magnetic filed, indicating that all the
electronic collective modes propagating with wave vector
q will generally cause net-charge-density oscillation and
thus belong to different branches of the CP modes.
The situation becomes completely different for a Weyl

semimetal with multiple pairs of WPs. Now we can have
collective “breathing modes” of Fermi surfaces in different
WP valleys so that they oscillate in an antiphase way and

cancel out the net charge oscillation exactly, as illustrated
schematically in Fig. 1(d) for two pairs of WPs. Since these
antiphase modes do not cause any net charge current, the
collective oscillations of the valley charge and valley
current will be completely decoupled from the plasmon
modes, and their dispersion relation remains gapless and
linear in the long-wave limit, which is called “chiral zero
sound” (CZS) in this paper. As we discuss in more detail
below, the CZS modes carry the nontrivial irreps of the
corresponding little group, with which we can figure out
how many CZS modes can exist with the magnetic field
being applied in some particular crystal directions.
In order to clearly describe the physical process in Weyl

semimetal systems, we divide the charge current contributed
by the νth WP valley jν into two parts: the “anomalous
current” jaν caused by the change of the valley particle number
through the CME and the “normal current” jnν caused by the
deformation of the Fermi surface in the νth valley. For the
general situation, the two types of currents are coupled
together and contribute jointly to both the CP and CME
modes. However, in the present paper, we consider a specific
limit where only the anomalous current can survive, and both
the CP and CZS are purely contributed by the CME. Such a
limit was proposed previously by Son and Yamamoto [24]
requiring the intravalley relaxation time to be much shorter
than the intervalley one, which guarantees that the intravalley
relaxation process is fast enough so that any deformation
of the Fermi surface from its equilibrium shape can be
neglected. In the following, we call this limit the “chiral
limit” and mainly discuss the physics of the CZS under it.

II. BOLTZMANN'S EQUATION METHOD

Let us first introduce the Boltzmann equation in the
chiral limit. The Boltzmann method is valid only in the
semiclassical limit, where ωBτ ≪ 1, ωB ≪ μ, and μτ ≫ 1.
Here, ωB ¼ vF

ffiffiffiffiffiffi
eB

p
is the magnetic frequency, vF is the

Fermi velocity, and τ is the quasiparticle lifetime. (In this
paper, we set ℏ ¼ 1 and the energy of WP as 0.) In the
semiclassical limit, the level smearing caused by the finite
quasiparticle lifetime is much larger than the Landau-level
splitting, but it is much smaller than the chemical potential;
hence, the Landau-level quantization can be ignored, and
the Fermi surface remains well defined. Therefore, in the
semiclassical limit, the collective dynamics of a Fermi-
liquid system can be described by the quasiparticle dis-
tribution function nνðk; r; tÞ through the following
Boltzmann equation, where ν is the valley index, k is
the momentum, and r is the position of the quasiparticle,

dδnνðk; r; tÞ
dt

¼ ð−_rν · ∂r − _kν · ∂kÞδnνðk; r; tÞ
þ S½δnνðk; r; tÞ�; ð1Þ

where the first term and second term on the rhs describe
the drifting motion and the scattering process, respectively.
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(An explicit derivation of this equation is given in
Appendix A). The time derivatives _rν and _kν are given
by the equations of motion of the quasiparticles. In the
presence of external field and Berry’s curvature ΩνðkÞ,
they can be written as [49,50]

γνðkÞ _kν ¼ −∂rϵν þ evνðkÞ ×Bþ eð∂rϵν ·BÞΩðkÞ; ð2Þ

γνðkÞ_rν¼vνðkÞþ∂rϵν×ΩνðkÞ−e½ΩνðkÞ ·vνðkÞ�B; ð3Þ

where ϵνðkÞ is the quasiparticle energy, vνðkÞ ¼ ∂kϵνðkÞ
is the quasiparticle velocity, and γνðk;BÞ ¼ 1 − eB ·
ΩνðkÞ is the phase-space volume correction due to the
presence of the Berry curvature [51]. We emphasize that
ϵνðkÞ is not the bare band energy but the renormalized
quasiparticle energy due to the presence of the collective
mode. To obtain ϵνðkÞ, we first write the total energy in
terms of nνðk; r; tÞ,

EtotalðtÞ ¼ E0
total þ

X
ν

Z
d3r

Z
d3k
ð2πÞ3 γνðk;BÞϵ

0
νðkÞδnνðk; r; tÞ þ

Z Z
d3rd3r0

e2

ϵ0jr − r0j δnðr; tÞδnðr
0; tÞ

þ
X
νν0

Z
d3r

Z
d3k
ð2πÞ3 γνðk;BÞ

Z
d3k0

ð2πÞ3 γν0 ðk
0;BÞfν;ν0δnνðk; r; tÞδnν0 ðk0; r; tÞ; ð4Þ
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FIG. 1. Chiral zero sound and chiral plasmon modes in the minimal model with four Weyl points. The symmetry group of the model is
C2v consisting of a twofold rotation axis in the z direction and two mirror planes in the x-z plane and y-z plane, respectively. In (a) and
(d), dashed lines represent the two mirrors, the colored disks represent the Fermi surfaces around the WPs, and the dashed gray circles
represent the Fermi surfaces in equilibrium. Here, the four WPs are labeled by ðs; aÞ, with s ¼ � the chirality and a ¼ 1, 2 the subvalley
index. (a) The volume of Fermi surfaces as functions of space and time in the chiral plasmon mode, where ðs; 1Þ and ðs; 2Þ are always in
phase, making the mode even underC2 rotation. (b),(c) The chiral magnetic currents and quasiparticle densities as functions of space and
time in the chiral plasmon mode. Here, the red and blue lines represent the contributions from the ð−; 1Þ [ð−; 2Þ] and ðþ; 1Þ [ðþ; 2Þ]
Fermi surfaces, respectively, and the black lines represent the net current and density. (d) The volume of Fermi surfaces in the chiral zero
sound mode, where ðs; 1Þ and ðs; 2Þ are always out of phase, making the mode odd underC2 rotation. (e),(f) The chiral magnetic currents
and quasiparticle densities as functions of space and time in the chiral zero sound mode. The contributions from the ð−; 1Þ, ðþ; 1Þ,
ð−; 2Þ, and ðþ; 2Þ Fermi surfaces are represented by the red solid, blue solid, red dashed, and blue dashed lines, respectively. In the chiral
zero sound mode, both the net current and the net density vanish.
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where the second and third terms are the long-range
Coulomb interaction and the residual short-range inter-
action between the quasiparticles, respectively [52].
Here, ϵ0νðkÞ is the bare energy dispersion for the quasi-
particle, δnνðk; r; tÞ ¼ nðk; r; tÞ − nF½ϵ0νðkÞ − μ� is the
deviation from Fermi-Dirac distribution, and δnðr; tÞ ¼P

ν

R ½ðd3kÞ=ð2πÞ3�γνðk;BÞnνðk; r; tÞ is the net charge
density at position r. In general, the short-range interaction
matrix fν;ν0 in the above equation should have the full
momentum dependence and be written as fν;ν0 ðk;k0Þ [52].
However, here we consider the case where the Fermi
surfaces are small enough such that the k dependence in
fν;ν0 ðk;k0Þ can be omitted. Then, the renormalized quasi-
particle energy is given by the functional derivative of the
total energy as ϵνðk; r; tÞ ¼ δEtotal=δnνðk; r; tÞ. An elabo-
rate study of collective modes in Weyl systems with only
one pair of WPs using the Boltzmann equation can be
found in Ref. [31].

III. THE CHIRAL LIMIT

To introduce the chiral limit, we decompose δnðk; r; tÞ
into two parts: the part that keeps the quasiparticle number
in each valley unchanged fδnνðk; r; tÞ and the part that
changes the valley quasiparticle numbers δnνðk; r; tÞ. In the
following, we refer to fδnνðk; r; tÞ as the Fermi-surface
degrees of freedom (d.o.f.) and δnνðk; r; tÞ as the valley
d.o.f. Since the intravalley scattering preserves the quasi-
particle number in each valley, δnνðk; r; tÞ can be relaxed
only through the intervalley scattering. On the other hand,fδnνðk; r; tÞ can be relaxed through both the inter- and
intravalley scattering processes. Therefore, the relaxation
time of δnνðk; r; tÞ is always longer than the relation time
of fδnνðk; r; tÞ. We can approximate the scattering term as

S½δnνðr;k; tÞ� ¼ −
fδnνðr;k; tÞ

τ0
−
δnνðr;k; tÞ

τv
: ð5Þ

As we prove in Appendix E, for the simplest case where
both the inter- and intravalley scattering cross sections
are constants (without k dependence), Eq. (5) is almost
exact, and the valley d.o.f. have the form δnνðk; r; tÞ ∝
δnνðr; tÞδ½ϵ0νðkÞ − μ�. Such a k-independent scattering
cross section is a good approximation for a small Fermi
surface. Now we argue that in the chiral limit where
τ0 ≪ τv, the Fermi-surface degrees and the valley degrees
are decoupled, and the collective modes are purely con-
tributed by the valley degrees. To zeroth order of τ0,
nonzero fδnνðk; r; tÞ will be relaxed to zero in an infinitely
short time; hence, the Fermi-surface degrees are always in
equilibrium, i.e., fδnνðk; r; tÞ ¼ 0. Therefore, to obtain the
dynamic equation in the chiral limit, we can simply assume
δnνðk; r; tÞ ¼ δnνðk; r; tÞ. Here we take the trial solution as
δnνðk; r; tÞ ¼ cνeiqð·r−ωtÞδ½ϵ0νðkÞ − μ�, where q and ω are

the wave vector and frequency of the corresponding
collective mode, respectively. By substituting this trial
solution and Eqs. (2) and (3) into Eq. (1), we obtain the
following dynamic equation�
ωþ i

τv

�
ην ¼

eðq · BÞχν
4π2βνðBÞ

ην

þ eðq ·BÞχν
4π2

X
ν0

�
fν;ν0 þ

e2

ϵ0q2

�
ην0 ; ð6Þ

where βνðBÞ is the bare compressibility of the νth valley,
χν ¼ �1 is the chirality, and ην ¼ βνðBÞcν is the imbal-
anced quasiparticle particle number (per unit volume)
for the νth valley. At zero temperature, the bare compress-
ibility is nothing but the density of states at the Fermi level.
In the semiclassical region, there are βνð0Þ ∼ μ2=v3F and
βνðBÞ − βνð0Þ ∼ ω2

B=v
3
F. In the semiclassical limit ωB ≪ μ,

we have βμðBÞ ≈ βμð0Þ.
Equation (6) is the key equation of this paper, which

directly leads to both CP and CZS solutions. We put the
rigorous derivation in Appendix B and give only a brief
introduction here in the main text. We can interpret Eq. (6)
as the continuity equation for the quasiparticle number in
the νth valley under the chiral limit, i.e., ∂tην þ∇ · jaν ¼ 0,
where jaν is the CME current contributed by the νth valley.
For simplicity, here we set τv ¼ ∞. i∂tην gives the lhs and
−i∇ · jaν gives the rhs of Eq. (6). In the chiral limit, each of
the Weyl valleys can be described by the Fermi-Dirac
distribution functions with time- and valley-dependent
chemical potential μν. Then, the CME current for the
νth valley jaν can be simply written as jaν ¼ eBχν=
ð4π2Þðμν − μÞ, where μ is the chemical potential in equi-
librium. The above anomalous current jaν is contributed by
two effects: the change of quasiparticle number and the
modification of the averaged quasiparticle energy in the νth
valley due to the interaction, which correspond to the two
terms on the rhs of Eq. (6), respectively.
In the above analysis, for simplicity, we always neglect

the k dependence in the form of residual interaction among
the quasiparticles, which is a good approximation as long
as all the FSs in such Weyl semimetal systems are small
enough. To generalize our discussion, in Appendix F we
prove that even if we keep k dependent, the valley d.o.f.
δnνðkÞ are still well defined and free of intravalley
scattering, but their form will be modified. Furthermore,
under the chiral limit, the dynamic equation is still given
by Eq. (6), except that fν;ν0 has to be understood as the
“k-averaged” interaction obtained from fν;ν0 ðk;k0Þ. Please
see Appendix F for more details.
To understand more about the chiral limit, we need to

find the upper bound of τ0 below which the zeroth-order
discussion is valid. In Appendix E, we deal with the effect
of finite τ0 in the standard second-order perturbation theory.
Here we describe only the main conclusion: Finite τ0
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introduces an effective damping term of approximately
τ0v2Fq

2 for the collective modes. In order to stabilize the
collective modes, the Hermitian part of Eq. (6) must be
larger than the non-Hermitian part, or, equivalently, the
eigenfrequency should be much larger than the damping
rate. Since the gapped CPs are coupled to the Coulomb
interaction, which dominates Eq. (6) in the long-wave
limit, the conditions for the gapped CPs to be stable
are (i) 1=τv ≪ f½e3ðq ·BÞ�=ðϵ0q2Þg and (ii) τ0v2Fq

2 ≪
f½e3ðq · BÞ�=ðϵ0q2Þg. These two conditions are automati-
cally satisfied in the long-wave limit, and hence, the gapped
CPs are always stable against τ0. On the other hand, since
the CZSs and gapless CPs are decoupled from the Coulomb
interaction, as we show in the model below and prove
generically in Appendix B, the conditions for CZSs and
gapless CPs to be stable are (i) 1

τv
≪ feðq ·BÞ½1þ βðBÞf�=

½βðBÞ�g and (ii) τ0v2Fq
2 ≪ feðq ·BÞ½1þ βðBÞf�=½βðBÞ�g.

These two conditions can be satisfied at some q only if

τ0
τv

≪
e2B2½1þ βðBÞf�2

v2Fβ
2ðBÞ ∼

ω4
B

μ4

�
1þ μ2f

2π2v3F

�
2

: ð7Þ

For simplicity, here we assume isotropic Fermi surfaces
such that βðBÞ ¼ ½μ2=ð2π2v3FÞ�. Thus, the upper bound of
τ0 below which Eq. (6) is valid is given by Eq. (7).
Now let us analyze the (magnetic) point symmetry group

of Eq. (6). Since the wave vector q enters Eq. (6) only
through the q · B term, the symmetry group of Eq. (6) is
much higher than the little group at q. In fact, all the point
group operations or combinations of point group operations
and the time reversal that preserve q ·B, B, and fν;ν0 will
keep Eq. (6) invariant. We emphasize that q ·B is invariant
under proper rotations and time reversal, but it changes
sign under inversion, and B transforms as a vector under
proper rotations, keeps invariant under the inversion, but
changes sign under time reversal. Therefore, only two types
of operations can leave Eq. (6) invariant: proper rotations
with an axis parallel to B and time reversal followed by
twofold proper rotations with an axis perpendicular to B.
In this paper, we denote the group consisting of these
symmetry operations as GcðBÞ, which is either a magnetic
point group or a point group, depending on whether or
not it contains combinations of a point group and the
time-reversal operations. The solutions of Eq. (6) form the
representations for the group GcðBÞ, which can be divided
into two categories: the trivial and nontrivial irreps. It is
then easy to see that the CP solutions belong to the trivial
irreps and the CZS solutions belong to the nontrivial ones.
To be specific, as we prove in Appendix B, the multiplicity
of the trivial irrep or the number of CPs is given by

NCPðBÞ ¼
X0

ν

jG0jjGcðBÞ ∩ Gνj
jGcðBÞjjGνj

; ð8Þ

and the multiplicity of the nontrivial irreps or the number of
CZSs is given by

NCZSðBÞ ¼
X0

ν

jG0j
jGνj

−
jG0jjGcðBÞ ∩ Gνj

jGcðBÞjjGνj
; ð9Þ

where the summation of ν will be carried out over all
inequivalent WPs. (Two WPs are equivalent if they are
related by some symmetry operation.) G0 is the maximal
(magnetic) point group of the (magnetic) space group,Gν is
the subgroup ofG0 that leaves the νth WP invariant, and jGj
is the number of elements in G. Here we take the Weyl
semimetal TaAs [5] in space group I41md (#109) as an
example to show the usage of Eqs. (8) and (9). Since TaAs
is time-reversal symmetric and the maximal point group
of I41md is C4v, we obtain G0 ¼ C4v þ TC4v, where T
represents the time reversal. Totally, there are 24 different
WPs in TaAs, which can be divided into two classes: eight
WPs located at the kz ¼ 0 plane and 16WPs located off the
kz ¼ 0 plane. The WPs within the same class can be related
by operations in G0 and are considered to be equivalent
from a symmetry point of view. The corresponding little
groups that leave the WPs unchanged are G1 ¼ fEg and
G2 ¼ fE; TC2g, respectively. Therefore, from Eq. (6),
there are 24 independent variables in total leading to the
same number of independent modes. Assuming the mag-
netic field is applied along the C4 rotation axis, we obtain
GcðBÞ ¼ C4, and hence, NCP ¼ 6 and NCZS ¼ 18.
As we discuss above, in the semiclassical region we

always have βνðBÞ − βνð0Þ ∼ ðω2
B=μ

2Þβνð0Þ, which is
derived in detail in Appendix B. Thus, to the leading-
order effect of the magnetic field, we can omit the B
dependence in βνðBÞ. Then, Eq. (6) is in first order of B,
and the corresponding symmetry group becomes higher
than GcðBÞ. This higher symmetry group denoted as Gcð0Þ
consists of all the proper rotations, time reversal (if
present), and time reversal followed by proper rotations
(if present) in the original group. Thus,Gcð0Þ is nothing but
the chiral subgroup of the little group at q ¼ 0. Therefore,
under semiclassical approximation, the number of CPs and
CZSs [Eqs. (8) and (9)] should be calculated with Gcð0Þ
instead of GcðBÞ.

IV. MINIMAL MODEL FOR CHIRAL ZERO
SOUND

At last, we consider a model Weyl semimetal system
with only two pairs of WPs with point group symmetryC2v,
as illustrated schematically in Fig. 1. For convenience, we
split the valley index ν into a chirality index s ¼ �1 and a
subvalley index a ¼ 1, 2. Under the C2 rotation, the ðs; 1Þ
WP and the ðs; 2Þ WP transform to each other; under the
Mx mirror, the ðþ; aÞ WP and the ð−; aÞ WP transform to
each other. Thus, the representation matrices formed by ην
can be written asDsa;s0a0 ðC2Þ¼ τxa;a0σ

0
s;s0 andDsa;s0a0 ðMxÞ ¼

τ0a;a0σ
x
s;s0 , where τx;y;z and σx;y;z are Pauli matrices in the

chirality space and subvalley space, respectively, and τ0 and
σ0 are two-by-two identity matrices. In the following, we
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omit the matrix subscripts for brevity. Without loss of
generality, we choose the form of residual interaction as
f ¼ f0τ0σ0 þ f1τxσ0 þ f2τ0σx þ f3τxσx, where we set
f0 ≥ f1 � ðf2 − f3Þ and f0 ≥ −f1 � ðf2 þ f3Þ to ensure
that the interaction is positive semidefinite. The magnetic
field is applied in the z direction. Applying the representa-
tion matrices to Eq. (6), one can easily verify that the C2

symmetry is kept but theMx symmetry is broken. Thus, the
solutions will form the irreps of C2. By diagonalizing
Eq. (6), we obtain two branches of CPs

ωð1;2ÞðqÞ þ i
τv

¼ � eðqzBÞ
4π2βðBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ20ðqÞ − ζ21ðqÞ

q
; ð10Þ

where ζ0ðqÞ¼1þβðBÞ½f0þf1þ2e2=ðϵ0q2Þ� and ζ1ðqÞ ¼
βðBÞ½f2 þ f3 þ 2e2=ðϵ0q2Þ�, and two branches of CZSs

ωð3;4ÞðqÞ þ i
τv

¼ � eðqzBÞ
4π2βðBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ20 − ξ21

q
; ð11Þ

where ξ0 ¼ 1þ βðBÞðf0 − f1Þ and ξ1 ¼ βðBÞðf2 − f3Þ. In
the long-wave limit, we have ζ20ðqÞ − ζ21ðqÞ ≈ ½ð4e2Þ=
ðϵ0q2Þ�½1þ βðBÞðf0 þ f1 − f2 − f3Þ�, so the CP modes
are gapped and the plasmon frequency is approximately

e2ðqzBÞ
2π2jqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βðBÞðf0 þ f1 − f2 − f3Þ

βðBÞϵ0

s
: ð12Þ

On the other hand, the CZS modes have linear dispersions
along the magnetic field direction with the sound velocity

cðBÞ ¼ eB
4π2βðBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ20 − ξ21

q
: ð13Þ

Here we give a rough estimation of the sound velocity for a
typical Weyl semimetal system. For simplicity, we set
f ¼ 0, B ¼ 10 T, μ ¼ 30 meV, vF ¼ 2 eVÅℏ−1; then we
obtain cðBÞ ≈ 0.34 eVÅℏ−1 ≈ 5 × 104 m=s.
The eigenvectors of the two CP modes are

ηð1;2Þ ¼ ½ λ1;2ðqÞ; −1; λ1;2ðqÞ; −1 �T; ð14Þ

where λ1;2ðqÞ ¼ ½ζ0ðqÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ20ðqÞ − ζ21ðqÞ

p �=ζ1ðqÞ, and the
eigenvectors of the two CZS modes are

ηð3;4Þ ¼ ½ λ3;4; −1; −λ3;4; 1 �T; ð15Þ
where λ3;4 ¼ ðξ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ20 − ξ21

p
Þ=ξ1. In the above expres-

sions, the bases of the η vector are ordered as
ðs; aÞ ¼ ðþ; 1Þ, ð−; 1Þ, ðþ; 2Þ, ð−; 2Þ. ηð1;2Þ are invariant
underC2 and hence form the trivial irrep, whereas ηð3;4Þ will
change sign under C2 and hence form the nontrivial irrep.
The CP mode ηð1Þ and the CZS mode ηð3Þ are schematically
plotted in Figs. 1(a) and 1(d), respectively. We can find
clearly from Fig. 1 that the CP is such a mode that the
quasiparticle densities with the same chirality oscillate with

the same phase, while the quasiparticle densities with the
opposite chiralities oscillate with opposite phases. Since the
CME current from the νth valley jν is proportional to χνην,
a net current oscillation will be generated by the CP mode,
which couples to the long-range Coulomb interaction and
leads to a finite plasmon frequency in the long-wavelength
limit. In contrast, in the CZS mode the valley densities with
the same chirality oscillate with opposite phases, leading to
the exact cancellation of CME currents from differen
valleys. Therefore, the CZS mode will be completely
decoupled from the charge dynamics and can keep its
acoustic nature in the long-wavelength limit.
It is insightful to compare the possibility to have zero

sound modes in ordinary metals and Weyl semimetals
under magnetic field. The collective modes for the former
metals have been discussed in detail in Ref. [43]. Using the
description developed above for an ordinary metal, all the
collective modes can be derived from the dynamics of
Fermi-surface d.o.f. fδnνðr;k; tÞ, which describe the small
deviation of the quasiparticle occupation at the Fermi
surface. For a system with approximately the sphere
symmetry, it can be expanded using the sphere harmonics
YLMðθk;ϕkÞ. Therefore, the longitudinal mode is formed by
the proper linear combination of the sphere harmonics with
m ¼ 0 and becomes the plasmon mode. The transverse
modes are described by the sphere harmonics with m ≠ 0.
Among them, the channel with m ¼ �1 will be absorbed
into the Maxwell equation to describe the possible elec-
trical magnetic wave, which contains no solution for
frequency below the plasmon edge. Therefore, the only
possible channels to have zero sound modes in an ordinary
metal system are the channels with jmj ≥ 2, provided that
the effective residual interaction in these channels is
positive definite to survive the Landau damping. These
conditions are difficult to fulfill and so is zero sound in
ordinary metal. Therefore, for Weyl semimetals under
magnetic field, the CME provides a unique mechanism
to stabilize the CZS with any form of residual interaction
that does not cause instability. At least in the chiral limit,
the dynamics of CZS involves only the anomalous current
but not the normal current, and hence, it is free of Landau
damping.

V. THERMAL PROPERTIES OF CHIRAL ZERO
SOUND

The existence of the CP and CZS in the chiral limit leads
to several interesting physical phenomena under the exter-
nal magnetic field. Here we introduce two of them. The first
one is the CZS contribution to the specific heat. The CZS
modes can be viewed as a set of 1D collective modes
dispersing only along the magnetic field. As we derive
in Appendix G, the specific heat contributed by the CZS
is κðB; TÞ ≈ k2BTΛ2=½6cðBÞ� for temperature T ≪ ΘCZS,
where ΘCZS ¼ cðBÞΛ=kB is the corresponding Debye tem-
perature for the CZS, cðBÞ is the sound velocity [Eq. (13)],
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Λ is the momentum space cutoff, and kB is the Boltzmann
constant, while in the high-temperature region (T ≫ ΘCZS),
the specific heat is κðB; TÞ ≈ kBΛ3=ð3π2Þ. To be specific,
in Fig. 2(a) we plot the specific heat as a function of
temperature using some typical parameters for the Weyl
semimetal systems. Although such a temperature depend-
ence is similar to the quasiparticle contribution to the
specific heat, the two can be distinguished from each
other by their different field dependence. Another unusual
property caused by the CZS is the thermal conductivity.
Since the CZS disperses only along the field direction, the
thermal current carried by the CZS modes can flow only
along this direction. As a result, the thermal conductivity
tensor contributed by the CZS modes has only one nonzero
entry. As we derive in Appendix G, if the magnetic field
is applied along the z direction, the thermal conductivity
is given by σthij ¼ δi;zδj;zτsðTÞc2ðBÞκðB; TÞ, where τsðTÞ is
the relaxation time for the CZS excitations. In the weak
field and low-temperature region (τ0ωB ≪ 1, T ≪ ΘCZS),
as κðB; TÞ ∝ T=cðBÞ and cðBÞ ∝ B, we obtain σthzz ∝ TB.
In the weak field and high-temperature region (τ0ωB ≪ 1,
T ≫ ΘCZS), as κ∼ const, we obtain σthzz ∝ B2.
In order to discuss the specific heat and thermal

conductivity in the strong field region (τ0ωB ≳ 1), we need
to rederive the dynamic equation under the strong field,
where the electronic states are already Landau levels. In
this case, since the compressibility oscillates with the field,
as a consequence, the velocity of the CZS as well as the
thermal conductivity, in general, should also oscillate with
the field. Here we focus only on the case ωB ≪ μ so that
there are still a large number of Landau levels below the
chemical potential. As we introduce in Appendix H, it turns
out that the dynamic equation has the same form of Eq. (6),

except that the field dependence of the compressibility is
modified. As we calculate in Appendix I, the compress-
ibility in the strong field can be expressed as βðBÞ ¼
βð0ÞðBÞ þ βð1ÞðBÞ þ � � �, where the βðl≥1ÞðBÞ terms oscillate
as the lth harmonics of 1=B. Under finite temperature,
the ratio between the first and zeroth components is
approximately

βð1ÞðBÞ
βð0ÞðBÞ ≈

ωB

μ

expð−π μ
ω2
Bτ0
Þ

sinchð2π2 μkBT
ω2
B
Þ cos

�
Sex;νðμÞ
eB

−
π

4

�
; ð16Þ

where sinchðxÞ ¼ ðex − e−xÞ=ð2xÞ, and SexðμÞ is the area
enclosed by the extreme circle (perpendicular to B) on the
Fermi surface. Here we assume eB > 0 and μ > 0. Because
of Eqs. (6) and (13), the oscillation in βðBÞ will lead to the
oscillation in the sound velocity of the CZS. Substituting
Eq. (16) for Eq. (13), we obtain the first-order oscillation of
the sound velocity as

cðBÞ ≈ cð0ÞðBÞ
�
1 −

ξ0
ξ20 − ξ21

βð1ÞðBÞ
βð0ÞðBÞ

�
; ð17Þ

where cð0ÞðBÞ is the nonoscillating component of the sound
velocity. As both the specific heat and thermal conductivity
are functions of the sound velocity, the oscillation in
the velocity leads to oscillations in the specific heat and
thermal conductivity as well. As an example, in Fig. 2(b)
we plot the thermal conductivity as a function of magnetic
field. In normal metals, the thermal conductivity is mainly
contributed by electrons and acoustic phonons. The phonon
part couples only indirectly to the magnetic field and
usually does not change much with the field. Therefore,
the part that oscillates with the field is mainly contributed
by the free electrons in the normal metal, which satisfies the
Wiedemann-Frantz law. As we introduce above, for the
Weyl semimetals in the chiral limit, since the CZS can
propagate only along the magnetic field, the thermal
conductivity along the field will be contributed by both
the CZS and free electrons leading to the dramatic violation
of the Wiedemann-Frantz law, which is absent for thermal
conductivity along the perpendicular direction. Early theo-
retical studies of the electronic contribution to the thermal
conductivity in Weyl semimetal without considering the
CZS modes obtain the B2 dependence for the thermal
conductivity under magnetic field [53], which is quite
different from the contribution from the CZS introduced
above. Such a field-dependent violation of the Wiedemann-
Frantz law has already been seen in the thermal conduc-
tivity measurement of TaAs under a magnetic field,
indicating the possible contribution from the CZS [54].
We note that for realistic systems which are not deeply in
the chiral limit, the CZS will also acquire nonzero velocity
along the transverse direction of the magnetic field as well,
which is caused by the accompanying normal current
during the oscillation. Therefore, the CZS or the gapless
CP can also contribute to the thermal conductivity along the
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FIG. 2. (a) The specific heat (per unit volume) in the four-WPs
model is plotted as a function of temperature. The specific heat is
plotted in the unit of kBΛ3, where kB is Boltzmann’s constant, and
Λ is the cutoff in the momentum integral. The temperature T is
plotted in units of Debye temperature for the CZS mode,
ΘCZS ¼ cðBÞΛ=kB, where cðBÞ is the speed of the CZS.
(b) The thermal conductivity in the four-WPs model is plotted
as a function of magnetic field. Here, SexðμÞ is the area enclosed
by the extreme circle on the Fermi surface that is perpendicular to
the magnetic field. The parameters are set as ωB ¼ 0.2μ,
kBT ¼ 1=ð2τ0Þ ¼ 0.001μ, and T=ΘCZS ¼ 10 and 0.1 for the
blue line and red line, respectively.
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transverse direction, but the effect should be much
less by orders of magnitude than that of the longitudinal
direction.

VI. DISCUSSION AND SUMMARY

The above-mentioned quantum oscillations in specific
heat and thermal conductivity can be viewed as strong
evidence for the existence of the CZS but still indirect.
It will be more convincing if we can also have direct ways
to measure it. In this regard, the direct ultrasonic meas-
urement of these materials under magnetic field and low
temperature may be difficult but worth trying. Another
possible experiment is inelastic neutron-scattering spec-
trum. Although the corresponding scattering cross section
for electrons may be very small, the existence of the CZS
can still be inferred from the spectrum of certain phonon
modes, which have the same symmetry representation as
the CZS and can hybridize with it when they intersect
each other at some particular wave vector to form the
“polariton mode”.
In summary, we propose that an exotic collective mode,

the chiral zero sound, can exist in a Weyl semimetal under
magnetic field with the chiral limit, where the intervalley
scattering time is much longer than the intravalley one.
The CZS can propagate along the external magnetic field
with its velocity being proportional to the field strength in
the weak field limit and oscillating in the strong field. The
CZS can lead to several interesting phenomena, among
which the giant quantum oscillation in thermal conductivity
is the most striking and can be viewed as “smoking gun”
evidence for the existence of it.
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APPENDIX A: BOLTZMANN’S EQUATION
AND COLLECTIVE MODES

Let us first derive the Boltzmann equation, which applies
when the Landau-level splitting, i.e., ωB ¼ vF

ffiffiffiffiffiffi
eB

p
, is

smaller than the imaginary part of the quasiparticle self-
energy and the chemical potential μ. The semiclassical
equations of motion of the Weyl fermion are [49,50]

_k ¼ −∂rϵðk; r; tÞ þ e_r ×B; ðA1Þ

_r ¼ ∂kϵðk; r; tÞ − _k ×ΩðkÞ; ðA2Þ

where e ¼ −jej (jej) is the electronlike (holelike) quasi-
particle, and

ΩðkÞ ¼ −ih∂kuðkÞj × j∂kuðkÞi ðA3Þ
is the Berry curvature. The decoupled equations are

γðk;BÞ _k ¼ −∂rϵðk; r; tÞ þ e∂kϵðk; r; tÞ ×B

þ e½∂rϵðk; r; tÞ ·B�ΩðkÞ; ðA4Þ

γðk;BÞ_r ¼ ∂kϵðk; r; tÞ þ ∂rϵðk; r; tÞ ×ΩðkÞ
− e½∂kϵðk; r; tÞ ·ΩðkÞ�B; ðA5Þ

where

γðk;BÞ ¼ 1 − eB ·ΩðkÞ ðA6Þ
is the phase-space measure. Now we denote the distribution
function over phase space as ρðk; r; tÞ, and due to particle
number conservation, we have

ρðkþ dt _k; rþ dt_r; tþ dtÞð1þ dt∂k · _kþ dt∂r · _rÞd3kd3r
¼ ρðk;r; tÞd3kd3r; ðA7Þ

and hence,

0 ¼ ∂
∂t ρðk; r; tÞ þ ½ð∂k · _kÞ þ _k · ∂k þ ∂r · _rþ _r · ∂r�
× ρðk; r; tÞ

¼ ∂
∂t ρðk; r; tÞ þ ∂k · ½ _kρðk; r; tÞ� þ ∂r · ½_rρðk; r; tÞ�:

ðA8Þ
Here we neglect the scattering term in Boltzmann’s
equation.
From now on, we assume there are a few valleys and

label the quantities in different valleys with a subscript ν.
For each valley, we introduce a weighted distribution
function nνðk; r; tÞ ¼ ρνðk; r; tÞ=γðkÞ, then the multivalley
Boltzmann equation is given by

0 ¼ γνðk;BÞ
∂
∂t nνðk; r; tÞ þ f−∂rϵνðk; r; tÞ

þ e∂kϵνðk; r; tÞ × Bþ e½∂rϵνðk; r; tÞ · B�ΩνðkÞg
· ∂knνðk; r; tÞ þ f∂kϵνðk; r; tÞ þ ∂rϵνðk; r; tÞ
×ΩνðkÞ − e½∂kϵνðk; r; tÞ ·ΩνðkÞ�Bg · ∂rnνðk; r; tÞ;

ðA9Þ
where, again, the scattering is neglected. In deriving
Eq. (A9), we make use of the relations ∂r · ½γνðk;BÞ_rν�¼0

and ∂k · ½γνðk;BÞ _kν� ¼ 0. Because of Eqs. (A4) and (A5),
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these two relations are satisfied as long as (i) k is not at the
Weyl point, where the semiclassical method does not apply,
and (ii) ∂r ·∂kϵðk;r;tÞ¼0, which is automatically satisfied
in our approximation for quasiparticle energy [Eq. (A13)].

In the presence of the collective mode, the single-particle
energy ϵνðk; r; tÞ should be determined self-consistently.
With quasiparticle excitation, the total energy is a func-
tional of the distribution function [52]

EtotalðtÞ ¼ E0
total þ

X
ν

Z
d3r

Z
d3k
ð2πÞ3 γνðk;BÞϵ

0
νðkÞδnνðk; r; tÞ þ

1

2

Z Z
d3rd3r0

1

ϵ0jr − r0j δnðr; tÞδnðr
0; tÞ

þ 1

2

X
νν0

Z
d3r

Z
d3k
ð2πÞ3 γνðk;BÞ

Z
d3k0

ð2πÞ3 γν0 ðk
0;BÞfν;ν0δnνðk; r; tÞδnν0 ðk0; r; tÞ; ðA10Þ

where the second and third terms denote, respectively, the
long-range Coulomb and residual short-range interaction
among the quasiparticles around the WPs. Here,

δnνðk; r; tÞ ¼ nνðk; r; tÞ − nF½ϵ0νðkÞ − μ� ðA11Þ

is the deviation of distribution from equilibrium, nFðϵÞ ¼
1=f1þ exp½−ðϵÞ=ðkBTÞ�g is the Fermi-Dirac distribution,

δnðr; tÞ ¼
X
ν

Z
d3k
ð2πÞ3 γνðk;BÞδnνðk; r; tÞ ðA12Þ

is the charge density at position r and time t, and fν;ν0 is a
real matrix due to the Hermitian condition of the Hamil-
tonian. The k dependence of fν;ν0 is neglected since we
consider the case where the Fermi surfaces are very small
compared to the Brillouin zone. The quasiparticle energy
can then be derived as the functional derivation of the total
energy

ϵνðk;r; tÞ ¼ ϵ0νðkÞþ
X
ν0

Z
d3k0

ð2πÞ3 fν;ν0γν0 ðk
0;BÞδnν0 ðk0;r; tÞ

þ eφðr; tÞ; ðA13Þ

where φ is the scalar potential determined by the Poisson
equation

−∂2
rφðr; tÞ ¼

e
ϵ0
δnðr; tÞ: ðA14Þ

Now we assume the deviation from equilibrium takes the
form of the plane wave

δnνðk; r; tÞ ¼ δnνðkÞeiðq·r−ωtÞ: ðA15Þ

Following this definition, we can rewrite the quasiparticle
energy as

ϵνðk; r; tÞ ¼ ϵ0νðkÞ þ
X
ν0

Z
d3k0

ð2πÞ3
�
fν;ν0 þ

e2

ϵ0q2

�
× γν0 ðk0;BÞδnν0 ðk0Þeiðq·r−ωtÞ: ðA16Þ

The equation of motion to first order of δnνðkÞ is
given by

0 ¼ −γνðk;BÞωδnνðkÞ

þ fq · vνðkÞ − eq ·B½vνðkÞ ·ΩνðkÞ�g
�
δnνðkÞ þ δT ½μ − ϵ0νðkÞ�

X
ν0

Z
d3k0

ð2πÞ3
�
fν;ν0 þ

e2

ϵ0q2

�
γν0 ðk0;BÞδnν0 ðk0Þ

�
− ie½vνðkÞ ×B� · ∂kδnνðkÞ; ðA17Þ

where vνðkÞ ¼ ∂kϵ
0
νðkÞ and δTðϵÞ ¼ −∂ϵnFðϵÞ.

For convenience, we replace the 3D variable k in Eq. (A17) with an energy ϵ and a 2D wave vector σ on the energy
surface. The integration over k in the νth valley can be rewritten asZ

d3k ¼
Z∞
0

dϵ
Z
ϵ
d2σ

1

jvνðϵ;σÞj
; ðA18Þ

where
R
ϵ means σ takes a value on the 2D surface with fixed energy ϵ. Apparently, the solution of Eq. (A17) takes

the form
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δnνðkÞ ¼ −∂ϵnFðϵ − μÞδnνðσÞ; ðA19Þ

where σ takes a value on the Fermi surface. Integrating the energy, Eq. (A17) becomes

0 ¼ −
γνðσ;BÞ
jvνðσÞj

ωδnνðσÞ

þ fq · v̂νðσÞ − eq ·B½v̂νðσÞ ·ΩνðσÞ�g ×
�
δnνðσÞ þ

X
ν0

Z
d2σ0

ð2πÞ3
�
fν;ν0 þ

e2

ϵ0q2

�
γν0 ðσ0;BÞ
jvν0 ðσ0Þj

δnν0 ðσ0Þ
�

− ie½v̂νðσÞ × B� · ∂kδnνðσÞ; ðA20Þ

where v̂νðσÞ ¼ vνðσÞ=jvνðσÞj and

∂k ¼ vνðkÞ
∂
∂ϵþ

X
i¼1;2

∂kσi
∂
∂σi : ðA21Þ

In Eq. (A20), all the quantities are defined on the Fermi
surfaces, so we omit the energy dependence of these
quantities; e.g., vνðσÞ is shorthand for vνðμ;σÞ.

APPENDIX B: THE CHIRAL LIMIT

We can decompose δn into two parts: the first part δn
changes particle numbers in different valleys, and the
second partfδn preserves the particle number in each valley
but deform the shape of Fermi surface in each valley. We
refer to δn as the valley d.o.f. and fδn as the Fermi-surface
d.o.f. In the general case, these two d.o.f. are strongly
coupled. However, as we argue below, in the chiral limit,
the dynamics of these two d.o.f. is decoupled. In the
presence of a scattering term, δn in general damps with
time, but the valley degrees and the Fermi-surface degrees
can have different relaxation times. We denote the relax-
ation time of fδn as τ0, whereas the relaxation time of δn is
τv. Then the time derivative term in Eq. (A20) should be
replaced by

ωδnνðσÞ →
�
ωþ i

τv

�
δnνðσÞ þ

�
ωþ i

τ0

�fδnνðσÞ: ðB1Þ

The chiral limit refers to the case where τ0 is much smaller
τv, i.e.,

τ0
τv

≪ 1: ðB2Þ

This limit can be achieved when the intravalley scat-
tering is much stronger than the intervalley scattering. In
Appendix E, we discuss the relaxation times contributed by
impurity scattering. In the simple case in Appendix E, δnν
is defined as

δnν ¼
1

βνðBÞ
Z

d2σ
ð2πÞ3

γνðσ;BÞ
jvνðσÞj

δnνðσÞ; ðB3Þ

where

βνðBÞ ¼
Z

d2σ
ð2πÞ3

γνðσ;BÞ
jvνðσÞj

¼ dρν
dμ

ðB4Þ

is the compressibility of the νth valley, and ρν is total
particle density of the νth valley. Then, Eq. (A20) can be
rewritten as

γνðσ;BÞ
jvνðσÞj

��
ωþ i

τv

�
δnν þ

�
ωþ i

τ0

�fδnνðσÞ�
¼ þfq · v̂νðσÞ − eq ·B½v̂νðσÞ ·ΩνðσÞ�g

×

�
δnνðσÞ þ

X
ν0

�
fν;ν0 þ

e2

ϵ0q2

�
βν0 ðBÞδnν0

�
− ie½v̂νðσÞ ×B� · ∂kδnνðσÞ: ðB5Þ

In the following, we study the physics in zeroth order of
τ0 and leave the discussion on the finite τ0 effect for
Appendix E. To zeroth order of τ0, the Fermi-surface d.o.f.
are always in thermal equilibrium, i.e.,fδnνðσÞ ¼ 0, and any
deviation from equilibrium will be immediately killed by
the strong scattering. By integrating σ into Eq. (B5), we get
a generalized eigenvalue equation�
ωþ i

τv

�
χνην ¼

eðq ·BÞ
4π2βνðBÞ

ην

þ e
4π2

ðq · BÞ
X
ν0

�
fν;ν0 þ

e2

ϵ0q2

�
ην0 :

ðB6Þ

Here, χν ¼ �1 is the chirality of the νth valley, and ην ¼
βνðBÞδnν is the disequilibrium quasiparticle number in the
νth valley. In deriving Eq. (B6), we applyZ

d2σv̂νðσÞ ·ΩνðσÞ ¼
Z

dS ·ΩνðσÞ ¼ −2πχν: ðB7Þ

Now let us discuss the symmetry of Eq. (B6).
Apparently, Eq. (B6) has a higher symmetry than the little
group of q: It contains all the symmetries that preserve the
chiralities of WPs and the direction of magnetic field. The
direction of q is irrelevant to the symmetry. This is because
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in the chiral limit, the electric field proportional to q enters
the equation only through the q · B term and thus couples
only to the chiral d.o.f. Therefore, finite q breaks only the
symmetries changing the chiralities. In the following, we
denote the symmetry group of Eq. (B6) as GcðBÞ. We
emphasize that some antiunitary symmetry, like time
reversal followed by a crystalline symmetry, can also keep
the chiralities and the magnetic field invariant. And, since
fν;ν0 is a real matrix, these antiunitary symmetries act on
Eq. (B6) as unitary operators. The explicit representation
matrix of all these symmetries is given in Eq. (B9).
It should be noticed that, to leading order of magnetic

field, i.e., setting βνðBÞ ¼ βνð0Þ, Eq. (B6) even has a
symmetry higher than GcðBÞ: The magnetic field enters
the equation only through term q ·B; thus, the direction
of magnetic field becomes irrelevant to the symmetry.
We denote this higher symmetry group as Gcð0Þ, which
consists of all the symmetries of the zero field system that
do not change chirality.
The solutions of Eq. (B6) must form irreps of GcðBÞ. As

we show in the next two sections, the trivial irreps ofGcðBÞ
always couple to the charge-density oscillation, and thus,
we call these modes forming trivial irreps CPs. As we
prove, only two of the CPs are gapped, whereas other CPs
are gapless in the long-wave limit. On the other hand, all
the nontrivial irreps are decoupled from density oscillation,
so we call them the CZSs. Now let us calculate the number
of trivial irreps in the solution to Eq. (B6). We first consider
a set of symmetry-related WPs in the inner Brillouin zone,
and one of them has the little group GW . We denote the
maximal (magnetic) point group of the space group as G0,
then each symmetry-related WP can be represented by a
coset representative of G0=GW ,

G0 ¼ h1GW þ h2GW þ � � � : ðB8Þ
The representation formed by the valley degrees is given by

∀ g ∈ G0; Dh;h0 ðgÞ ¼
�
1 if gh0 ∈ hGW;

0 else;
ðB9Þ

TrDðgÞ ¼
� jG0j=jGW j; g ∈ GW;

0; g ∉ GW:
ðB10Þ

Now we reduceD to irreps ofGcðBÞ. The number of trivial
irreps is given by

1

jGcðBÞj
X

g∈GcðBÞ
TrDðgÞ ¼ jG0jjGcðBÞ ∩ GW j

jGcðBÞjjGW j
: ðB11Þ

Therefore, for a system with a few sets of nonequivalent
WPs, the number of CP modes and CZS modes are given by

NCPðBÞ ¼
X0

ν

jG0jjGcðBÞ ∩ Gνj
jGcðBÞjjGνj

ðB12Þ

and

NCZSðBÞ ¼
X0

ν

jG0j
jGνj

−
jG0jjGcðBÞ ∩ Gνj

jGcðBÞjjGνj
; ðB13Þ

respectively. Here, ν sums over all inequivalent WPs, andGν

is the little group of the νth WP.

APPENDIX C: CZS

If ην is not a trivial irrep of GcðBÞ, then there must beP
ν ην ¼ 0, implying that it does not cause any charge-

density oscillation. Thus, for nontrivial irreps, we can omit
the Coulomb term, and the corresponding modes are the
CZSs. Now let us solve the equation of motion for the CZS.
Notice that the matrix on the rhs of Eq. (B6) is real and
symmetric, so we diagonalize it as

fν;ν0 þ
1

βνðBÞ
δν;ν0 ¼

1

β̄ðBÞ
X
a

Oν;aλaOν0;a; ðC1Þ

where β̄ðBÞ is the averaged βνðBÞ, O is an orthogonal
matrix, and the λa’s are dimensionless numbers. Applying
the transformation

ην ¼
X
a

Oν;aη
0
a; ðC2Þ

we can rewrite Eq. (B6) as�
ωþ i

τv

�X
ν;a0

Oν;aχνOν;a0η
0
a0 ¼

e
4π2

ðq ·BÞλaη0a: ðC3Þ

Applying the transformation

Ξa;a0 ¼
X
ν

1ffiffiffiffiffi
λa

p Oν;aχνOν;a0
1ffiffiffiffiffiffi
λa0

p ; η00a ¼
ffiffiffiffiffi
λa

p
η0a; ðC4Þ

we get a regular eigenvalue problem

Ξη00 ¼ eðq · BÞ
4π2β̄ðBÞðωþ i

τv
Þ η

00; ðC5Þ

where Ξ has the symmetry of GcðBÞ. The dispersion of the
CZS is given by

ωCZS;nðqÞ þ
i
τv

¼ eðq · BÞ
4π2β̄ðBÞξn

; n ¼ 1;…; NCZSðBÞ:

ðC6Þ

Here, ξn is the nth eigenvalue of Ξ.
It should be noticed that Ξ is real and symmetric (such

that the ξn’s are real) only if all λa’s are positive. Thus, the
number of CZS modes is given by Eq. (B13) only if
Eq. (C1) is positive definite. Otherwise, only irreps where
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all λa’s are positive correspond to physically observable
modes. The irreps having negative λa’s in general have
complex ξ and so are not stable.

APPENDIX D: CP

For the trivial irreps, in general we have
P

ν ην ≠ 0.
Therefore, the trivial irreps contribute to density oscillation,

and thus, the Coulomb term must be considered. However,
as ½e2=ðϵ0q2Þ� is a rank-one operator, in the long-wave
limit, there should be only one channel that responds to
Coulomb interaction. To separate this channel, we define
the projection operator Pν;ν0 ¼ ð1=NWÞ, where NW is the
number of WPs, and divide the terms on the rhs of Eq. (B6)
into four components:

�
e2

ϵ0q2

�
þ f þ

�
1

βðBÞ
�
¼ P

��
e2

ϵ0q2

�
þ f þ

�
1

βðBÞ
��

PþQ

�
f þ

�
1

βðBÞ
��

Q

þ P

�
f þ

�
1

βðBÞ
��

QþQ

�
f þ

�
1

βðBÞ
��

P: ðD1Þ

Here, ½e2=ðϵ0q2Þ� represents the matrix where every element is ½e2=ðϵ0q2Þ�, f1=½βðBÞg represents the diagonal matrix
f1=½βνðBÞ�gδν;ν0 , and Q ¼ I − P, where I is the identity matrix. We apply an orthogonal transformation V ¼ I þ S − ST

where S ¼ PSQ, to remove the mixing term between the P and Q subspaces. To second order of q, we find that

S ¼ −
ϵ0

e2NW
q2P

�
f þ

�
1

βðBÞ
��

QþOðq4Þ ðD2Þ

and

VT

��
e2

ϵ0q2

�
þ f þ

�
1

βðBÞ
��

V ¼ P

��
e2

ϵ0q2

�
þ f þ

�
1

βðBÞ
��

PþQ

�
f þ

�
1

βðBÞ
��

QþOðq2Þ: ðD3Þ

Using the fact
P

ν00 Vν00;νχν00Vν00;ν0 ¼ χνδν;ν0 þOðq2Þ, we can rewrite Eq. (B6) as�
ωþ 1

τv

�
χνην ¼

X
ν0

�
P

��
e2

ϵ0q2

�
þ f þ

�
1

βðBÞ
��

PþQ

�
f þ

�
1

βðBÞ
��

Q

�
ν;ν0

ην0 þOðq2Þ: ðD4Þ

To solve this generalized eigenvalue equation, we apply
the technique used in Appendix C: diagonalizing the matrix
on the rhs and transforming the equation to a regular
eigenvalue problem. Let us write the matrix on the right-
hand side as f1=½β̄ðBÞ�gPa Oν;aλaOν0;a. Applying the
transformation

Ξa;a0 ¼
X
ν

1ffiffiffiffiffi
λa

p Oν;aχνOν;a0
1ffiffiffiffiffiffi
λa0

p ; η00a ¼
ffiffiffiffiffi
λa

p X
ν

Oν;aην;

ðD5Þ

we get a regular eigenvalue problem

Ξη00 ¼ eðq · BÞ
4π2β̄ðBÞðωþ i

τv
Þ η

00: ðD6Þ

The frequencies of the CP modes are then given by

ωCP;n þ
i
τv

¼ eðq ·BÞ
4π2β̄ðBÞξnðqÞ

; ðD7Þ

where the ξn’s are eigenvalues of Ξ. Now let us analyze the
spectrum of Ξ. For convenience, we set Oν;1 as the
eigenvector of P, so the corresponding eigenvalue is

λ1 ¼
e2NW

ϵ0q2
β̄ðBÞ þ 1

NW

X
ν;ν0

�
fν;ν0 β̄ðBÞ þ

β̄ðBÞ
βνðBÞ

δν;ν0

�
þOðq2Þ; ðD8Þ

which is singular in the limit q → 0. Then, due to
Eq. (D12), the Ξ matrix takes the form

Ξ ¼
�

0 ζ

ζT Ξ0

�
þOðq2Þ; ðD9Þ

where

ζ1;a ¼ Ξ1;a; a ¼ 2; 3…; ðD10Þ
and

Ξ0
a;a0 ¼ Ξa;a0 ; a; a0 ¼ 2; 3… ðD11Þ
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are submatrices of Ξ. We emphasize that for a ≥ 2, λa is not
singular. Thus, in the limit q → 0, Ξ0 approaches a constant
matrix, whereas ζ1;a ∼ jqj. Therefore, by diagonalizing Ξ0,
we can rewrite Ξ as

Ξ ¼ UT

0BBBBB@
0 c2jqj c3jqj � � �

c2jqj ξ02 0 � � �
c3jqj 0 ξ03 � � �
..
. ..

. ..
. . .

.

1CCCCCAU þOðq2Þ; ðD12Þ

where the ξ0a’s are eigenvalues of Ξ0, and U is some
orthogonal matrix. Now we prove that one of the ξ0a¼2;3… is
zero. We denote the diagonal matrix δν;ν0χν as [χ]. Then,
the projected [χ] matrix in Q subspace is Q½χ�Q ¼ ½χ�−
P½χ� − ½χ�P. Apparently, ην ¼ 1 and ην ¼ χν are two zero
eigenvectors of Q½χ�Q, wherein ην ¼ 1 is in subspace P,
whereas ην ¼ χν is in subspace Q. As Ξ0 is equivalent to
Q½χ�Q up to an invertible transformation, Ξ0 has one zero
eigenvalue in theQ subspace. Therefore, one of the ξ0a¼2;3…

is zero. Here we choose ξ02 ¼ 0. In the limit q → 0, we have
the Ξ eigenvalues as

ξ1ðqÞ ¼ −ξ2ðqÞ ¼ jc2jjqj þOðq2Þ; ðD13Þ

ξnðqÞ ¼ ξ0nðqÞ þOðq2Þ; n ¼ 3;…; NCPðBÞ: ðD14Þ

Therefore, due to Eq. (D18), n ¼ 1, 2 correspond to the
gapped CP modes, whereas n ¼ 3;…; NCPðBÞ correspond
to the gapless CP modes. The low-energy behavior of the
gapless CPs is very similar with the CZSs: Both of them
have a linear dispersion in the limit q → 0. However, a vital
difference is that gapless CPs are coupled to gapped CPs
through the ca≥3 terms in Eq. (D12), whereas the CZSs are
not. As a result, the dispersions of gapless and gapped CPs
form anticrossings, whereas the dispersions of CZSs and
gapped CPs form symmetry-protected crossings.
Here we give a simplified method to calculate the gapped

CP frequency. Since the gapped CP is driven by the
Coulomb interaction, for simplicity, in this method we
omit fν;ν0 and 1=τv. From Eq. (B6), we get

ην ¼
e
4π2

ðq ·BÞ
χνβνðBÞω − e

4π2
ðq · BÞ ·

e2

ϵ0q2

X
ν0
ην0 ; ðD15Þ

and thus,

1 ¼ e2

ϵ0q2

X
ν

e
4π2

ðq ·BÞβνðBÞ
χνβνðBÞω − e

4π2
ðq ·BÞ : ðD16Þ

Supposing ω is a constant in the limit q → 0, we have

1 ¼ e2

ϵ0q2

X
ν

�
χν

e
4π2

ðq ·BÞ
ω

þ ð e
4π2

q ·BÞ2
βνðBÞω2

þ χν
ð e
4π2

q ·BÞ3
β2νðBÞω3

þ ð e
4π2

q · BÞ4
β3νðBÞω4

þ � � �
�
: ðD17Þ

To zeroth order of q, we need keep only the first two terms
in the above equation. The first term must vanish due to the
no-go theorem of Weyl semimetals [55,56], which saysP

ν χν ¼ 0. Thus, we have

ωCP;1;2ðq → 0Þ ¼ � e2

4π2
jq̂ ·Bj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ϵ0

X
ν

1

βνðBÞ

s
; ðD18Þ

where q̂ ¼ q=jqj.

APPENDIX E: FINITE INTRAVALLEY
SCATTERING

In this Appendix, we solve Eq. (B5) to first order of τ0
and justify the chiral limit approximation using second-
order perturbation theory. First, let us derive τ0 and τv
explicitly in terms of the scattering cross section. We model
the scattering cross section as

Wν;ν0 ðσ;σ0Þ ¼ δν;ν0w0 þ ð1 − δν;ν0 Þw1: ðE1Þ

Thus, the scattering term is given by

S½nνðσÞ� ¼
X
ν0

Z
d2σ0

ð2πÞ3
γν0 ðσ0;BÞ
jvν0 ðσ0Þj

Wν;ν0 ðσ;σ0Þ

× ½δnν0 ðσ0Þ− δnνðσÞ�

¼ ðw0 −w1Þ
Z

d2σ0

ð2πÞ3
γνðσ0;BÞ
jvνðσ0Þj

½δnνðσ0Þ− δnνðσÞ�

þw1

X
ν0

Z
d2σ0

ð2πÞ3
γν0 ðσ0;BÞ
jvν0 ðσ0Þj

½δnν0 ðσ0Þ− δnνðσÞ�:

ðE2Þ

We introduce the quasiparticle d.o.f.

δnν ¼
1

βνðBÞ
Z

d2σ
ð2πÞ3

γνðσ;BÞ
jvνðσ;BÞj

δnνðσÞ; ðE3Þ

and fδnνðσÞ ¼ δnνðσÞ − δnν. Then, Eq. (E2) can be rewrit-
ten as
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S½nνðσÞ� ¼ ðw0 − w1Þ½βνðBÞδnν − βνðBÞδnνðσÞ� þ w1

X
ν0
½βν0 ðBÞδnν0 − βν0 ðBÞδnνðσÞ�

¼ −ðw0 − w1ÞβνðBÞfδnνðσÞ þ w1

X
ν0
βν0 ðBÞðδnν0 − δnνÞ − w1

X
ν0
βν0 ðBÞfδnνðBÞ

¼ −
�
w0βνðBÞ þ w1

X
ν0≠ν

βν0 ðBÞ
�
δnνðσÞ −

�
w1

X
ν0
βν0 ðBÞ

�
δnνðσÞ þ w1

X
ν0
βν0 ðBÞδnν0 : ðE4Þ

Defining

1

τ0;ν
¼ w0βνðBÞ þ w1

X
ν0≠ν

βν0 ðBÞ; ðE5Þ

1

τv
¼ w1

X
ν0
βν0 ; ðE6Þ

we can rewrite the scattering term as

S½δnνðσÞ� ¼ −
fδnνðσÞ
τ0;ν

−
δnν
τv

þ w1

X
ν0
βν0 ðBÞδnν0 : ðE7Þ

The first term relaxes the deformation of the Fermi surfaces
that do not change the quasiparticle number in each valley,
the second term relaxes the quasiparticle number in each
valley, and the last term is feedback from the change
of the total quasiparticle number. Because the scattering
term is elastic, the total quasiparticle number on the Fermi
surface should be a constant under the scattering. One can
confirm this by observing

P
ν

R ½ðd2σÞ=ð2πÞ3�½γνðσ;BÞ=
jvνðσ;BÞj�S½nνðσÞ� ¼ 0. For simplicity, in the following we
neglect the ν dependence in τ0;ν; i.e., we set τ0;ν ¼ τ0.
For simplicity, here we consider isotropic Fermi surfa-

ces, where jvνðσÞj, βνðσÞ, ΩνðσÞ · v̂νðσÞ do not depend on
σ, and γνðσ;BÞ ¼ 1. According to Eq. (B5), to leading
order of τ0, we get the fδnνðσÞ part as

fδnνðσÞ ¼ −iτ0½q · vνðσÞ�
ðωþ i

τv
Þχν

e
4π2

ðq ·BÞ ην þOðτ20Þ: ðE8Þ

Now we look at the leading-order effect of τ0 on the CZS
modes. For a specific branch of the CZS, Eq. (E8) gives

fδnνðσÞ ¼ −iτ0½q · vνðσÞ�
χν

β̄ðBÞξ ην þOðτ20Þ; ðE9Þ

where ξ is the corresponding eigenvalue of the Ξ matrix
[Eq. (C4)]. Substituting it back into Eq. (B5) and integrat-
ing σ, we get�
ωþ i

τv

�
χνην ¼ −iτ0

fðq · vF;νÞ2g
ξ

ην þ
eðq ·BÞ
4π2βνðBÞ

ην

þ e
4π2

ðq · BÞ
X
ν0

�
fν;ν0 þ

e2

ϵ0q2

�
ην0 ;

ðE10Þ

where

fðq · vF;νÞ2g ¼ 1

β̄ðBÞ
Z

d2σ
ð2πÞ3

1

jvνðσÞj
½q · vνðσÞ�2: ðE11Þ

Apparently, finite τ0 introduces a non-Hermitian term in the
dynamic equation of η. This term leads to a damping rate
proportional to τ0q2v2F=ξ. Therefore, for zero sound to be
stable, the following relation should be satisfied:

eBq
βξ

≫ τ0
q2v2F
ξ

: ðE12Þ

Considering the intervalley scattering, the following rela-
tion should also be satisfied:

eBq
βξ

≫
1

τv
: ðE13Þ

The above two inequalities are equivalent to

ξ

τvvF

μ2

ω2
B
≪ q ≪

1

τ0vF

ω2
B

μ2
; ðE14Þ

which have solutions only if

τ0
τv

≪
ω4
B

μ4
1

ξ
: ðE15Þ

Equation (E15) gives the upper limit of τ0, above which the
CZS modes become unstable. It should be noticed that 1=ξ
is of the order of 1þ β̄ðBÞjfj.
Perturbation theory for gapless CP modes is similar to

the perturbation theory for the CZS modes, and the stable
condition of the gapless CP modes is also given by
Eq. (E15). Now we consider the gapped CP modes. For
the positive branch of the gapped CP, the frequency of
which is denoted as ωCP, Eq. (E8) gives

fδnν ¼ −iτ0½q̂ · vνðσÞ�
ωCPχν

e
4π2

ðq̂ ·BÞ ην þOðτ20Þ: ðE16Þ

Following the above analysis, we find this term leads
to a damping rate proportional to β̄ðBÞðqvFÞðτ0ωCPÞ=
eB ∼ ðqvFÞðτ0ωCPÞðμ2=ω2

BÞ. Thus, for the gapped CP to
be stable, there should be
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τ0 ≪
1

qvF

ω2
B

μ2
: ðE17Þ

Therefore, the CP modes in the long-wave limit are always
stable against the intravalley scattering.

APPENDIX F: k-DEPENDENT SCATTERING
AND INTERACTION

In this section, we consider the k dependence in the
scattering cross section and residual short-range interac-
tion. We show that the dynamic equations (6) and (B6) are
still correct in the chiral limit, except that the parameters
should be modified.

1. Elastic scattering conserving the
renormalized energy

We emphasize that it is the renormalized quasiparticle
energy, other than the bare quasiparticle energy, that is
conserved in the scattering process. This effect is not
considered in Appendixes A–E. As we explain below,

when the short-range interaction fν;ν0 ðk;k0Þ is k indepen-
dent, this effect can be neglected safely. However, when
fν;ν0 ðk;k0Þ becomes k dependent, it is crucial to consider
this effect to obtain the correct dynamic equation.
In the presence of a k-dependent interaction, the renor-

malized quasiparticle energy in Eq. (A16) is modified to

ϵνðkÞ ¼ ϵ0νðkÞ þ
X
ν0

Z
d3k0

ð2πÞ3
�
fν;ν0 ðk;k0Þ þ e2

ϵ0q2

�
× γν0 ðk0;BÞδnν0 ðk0Þ: ðF1Þ

Now we neglect the r and t dependence in δnνðkÞ because
the scattering process has a much shorter length scale and
timescale than the collective mode. Here we omit the plane-
wave factor eiðq·r−ωtÞ for simplicity. Changing k to the
variable ϵ, σ and writing nνðkÞ as nνðϵ;σÞ ¼ nFðϵ − μÞ þ
δðϵ − μÞδnνðσÞ (as we introduce in Appendix A), we can
write the correction to the quasiparticle energies of the
quasiparticles on the Fermi surface as

ϵ0νðkÞ ¼ μ ⇒ ΔνðσÞ ¼ ϵνðkÞ − ϵ0νðkÞ ¼
X
ν0

Z
d2σ0

ð2πÞ3
�
fν;ν0 ðσ;σ0Þ þ

e2

ϵ0q2

�
γν0 ðk0;BÞ
jvν0 ðσ0Þj

δnνðσ0Þ: ðF2Þ

We require the renormalized quasiparticle energy to be conserved in the scattering process. Thus, the scattering term is
modified to

S½nνðkÞ� ¼
X
ν0

ZZ
dϵ0d2σ0

ð2πÞ3
γνðσ0;BÞ
jvνðσ0Þj

Wν;ν0 ðσ;σ0Þδ½ϵþ ΔνðσÞ − ϵ0 − Δν0 ðσ0Þ�½nν0 ðϵ0;σ0Þ − nνðϵ;σÞ�: ðF3Þ

To linear order of δnνðσÞ, we obtain

S½nνðkÞ� ¼
X
ν0

ZZ
dϵ0d2σ0

ð2πÞ3
γνðσ0;BÞ
jvνðσ0Þj

Wν;ν0 ðσ;σ0Þδðϵ − ϵ0Þ½δðϵ0 − μÞδnν0 ðσ0Þ − δðϵ − μÞδnνðσÞ�

þ
X
ν0

ZZ
dϵ0d2σ0

ð2πÞ3
γνðσ0;BÞ
jvνðσ0Þj

Wν;ν0 ðσ;σ0ÞfnF½ϵþ ΔνðσÞ − Δν0 ðσ0Þ − μ� − nFðϵ − μÞg

¼ δðϵ − μÞ
X
ν0

Z
d2σ0

ð2πÞ3
γνðσ0;BÞ
jvνðσ0Þj

Wν;ν0 ðσ;σ0Þ½δnν0 ðσ0Þ þ Δν0 ðσ0Þ − δnνðσÞ − ΔνðσÞ�: ðF4Þ

2. The valley degrees of freedom

In Appendix B, we decompose δnνðσÞ into two parts:
the valley d.o.f. δnνðσÞ and the Fermi-surface d.o.f.fδnνðσÞ.
In Appendix E, we show that if the short-range interaction
and the scattering cross section are k independent, δnνðσÞ
is a constant for each valley [Eq. (E3)]. In the following,
we show that with k-dependent interaction and scattering,
the valley d.o.f. are still well defined but their form is
modified.

First, we decompose the scattering cross section into an
intravalley component and an intervalley component

Wν;ν0 ðσ;σ0Þ ¼ δν;ν0W
ð0Þ
ν ðσ;σ0Þ þ ð1 − δν;ν0 ÞWð1Þ

νν0 ðσ;σ0Þ:
ðF5Þ

Correspondingly, we then decompose the scattering term
into an intravalley term Sð0Þ and an intervalley term Sð1Þ.
Here, we are interested only in Sð0Þ,
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Sð0Þ½δnνðσÞ� ¼
1

λ

Z
d2σ0

ð2πÞ3
γνðσ0;BÞ
jvνðσ0Þj

Wð0Þ
ν ðσ;σ0Þ½δnν0 ðσ0Þ þ Δν0 ðσ0Þ − δnνðσÞ − ΔνðσÞ�: ðF6Þ

The valley d.o.f. are undamped under the intravalley scattering. The following condition is sufficient and necessary for
δnνðσÞ to be undamped under arbitrary intravalley scattering

δnνðσÞ þ ΔνðσÞ ¼ δnνðσÞ þ
X
ν0

Z
d2σ0

ð2πÞ3
�
fν;ν0 ðσ;σ0Þ þ

e2

ϵ0q2

�
γν0 ðk0;BÞ
jvν0 ðσ0Þj

δnν0 ðσ0Þ ¼ aν; ðF7Þ

where aν is some constant. It is direct to see that when f is
independent of σ, Eq. (E3) satisfies Eq. (F7).
We expand the valley d.o.f. on a set of basis functions

δnνðσÞ ¼
X
α

cαhναðσÞ: ðF8Þ

For k-independent f, we can simply set hναðσÞ ¼ δνα, such
that for arbitrary cα, Eq. (F7) is satisfied. For k-dependent
f, we require hνα to satisfy

hναðσÞ þ
X
ν0

Z
d2σ0

ð2πÞ3
�
fν;ν0 ðσ;σ0Þ þ

e2

ϵ0q2

�
γν0 ðk0;BÞ
jvν0 ðσ0Þj

× hν0αðσ0Þ ¼ Aνα; ðF9Þ

where Aνα is a matrix, such that for arbitrary cα, Eq. (F7) is
satisfied, and aν is given as

aν ¼
X
α

cαAνα: ðF10Þ

We decompose the short-range interaction into a
k-independent part f̄ and a k-dependent part δf,

fν;ν0 ðσ;σ0Þ ¼ f̄ν;ν0 þ δfν;ν0 ðσ;σ0Þ: ðF11Þ

Then, the basis functions subject to Eq. (F9) can be solved
by series expansion in order of δf. We take the trial solution

hναðσÞ ¼ δνα þ
X∞
m¼1

hðmÞ
να ; ðF12Þ

where hðmÞ is in mth order of δf. Substituting Eq. (F12) for
Eq. (F9), we obtain

hðmþ1Þ
να ðσÞ ¼ −

X
ν0

Z
d2σ0

ð2πÞ3
γνðσ0;BÞ
jvνðσ0Þj

δfν;ν0 ðσ;σ0ÞhðmÞ
ν0α ;

m ¼ 0; 1; 2…; ðF13Þ

where hð0Þνα ¼ δνα and

Aνα ¼ δνα þ
X
ν0

Z
d2σ0

ð2πÞ3
γνðσ0;BÞ
jvνðσ0Þj

�
f̄ν;ν0 þ

e2

ϵ0q2

��
δν0α þ

X∞
m¼1

hðmÞ
ν0α ðσ0Þ

�
: ðF14Þ

We can properly choose f̄ν;ν0 such thatZ
d2σ
ð2πÞ3

γνðσ;BÞ
jvνðσÞj

Z
d2σ0

ð2πÞ3
γνðσ0;BÞ
jvν0 ðσ0Þj

�
δfν;ν0 ðσ;σ0Þ þ

X
ν00

Z
d2σ00

ð2πÞ3
γνðσ00;BÞ
jvν00 ðσ00Þj

δfν;ν00 ðσ;σ00Þδfν00;ν0 ðσ00;σ0Þ þ � � �
�

¼ 0:

ðF15Þ

Then, due to Eqs. (F13) and (F15), there areZ
d2σ
ð2πÞ3

γνðσ;BÞ
jvνðσÞj

hναðσÞ ¼ δναβνðBÞ ðF16Þ

and

Aνα ¼ δνα þ
�
f̄ν;α þ

e2

ϵ0q2

�
βαðBÞ: ðF17Þ

To be specific, we can expand f̄ν;ν0 that fulfills Eq. (F15) in orders of f as
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f̄ ¼ f̄ð1Þ þ f̄ð2Þ þ � � � ; ðF18Þ

where

f̄ð1Þν;ν0 ¼
1

βνðBÞβν0 ðBÞ
Z

d2σ
ð2πÞ3

γνðσ;BÞ
jvνðσÞj

Z
d2σ0

ð2πÞ3
γνðσ0;BÞ
jvν0 ðσ0Þj

fν;ν0 ðσ;σ0Þ ðF19Þ

and

f̄ð2Þν;ν0 ¼
1

βνðBÞβν0 ðBÞ
Z

d2σ
ð2πÞ3

γνðσ;BÞ
jvνðσÞj

Z
d2σ0

ð2πÞ3
γνðσ0;BÞ
jvν0 ðσ0Þj

×

�X
ν00

Z
d2σ00

ð2πÞ3
γνðσ00;BÞ
jvν00 ðσ00Þj

ðfν;ν00 ðσ;σ00Þ − fð1Þν;ν00 Þðfν00;ν0 ðσ00;σ0Þ − fð1Þν00;ν0 Þ
�
: ðF20Þ

3. Dynamic equation

Now we study the dynamic equation of the valley d.o.f. We first look at the scattering term. Since dnνðσÞ ¼
δnνðσÞ þfδnνðσÞ and S ¼ Sð0Þ þ Sð1Þ, where Sð0Þ is contributed by intravalley scattering [Eq. (F6)] and Sð1Þ is contributed
by intervalley scattering, the total scattering term decomposes into four terms

S½nνðσÞ� ¼ Sð0Þ½δnνðσÞ� þ Sð1Þ½δnνðσÞ� þ Sð0Þ½fδnνðσÞ� þ Sð1Þ½fδnνðσÞ�: ðF21Þ

In the last subsection, we prove that Sð0Þ½δnνðσÞ� ¼ 0. Now we make a relaxation-time approximation for the other three
terms

Sð1Þ½δnνðσÞ� ≈ −
δnνðσÞ
τv

; ðF22Þ

Sð0Þ½fδnνðσÞ� þ Sð1Þ½fδnνðσÞ� ≈ −
fδnνðσÞ
τ0

: ðF23Þ

In the chiral limit, we have Sð0Þ ≫ Sð1Þ and so τ0 ≪ τv.
Following the derivation in Appendix A, we obtain the linearized Boltzmann equation with k-dependent short-range

interaction as

γνðσ;BÞ
jvνðσÞj

��
ωþ i

τv

�
δnνðσÞ þ

�
ωþ i

τ0

�fδnνðσÞ�
¼ fq · v̂νðσÞ − eq ·B½v̂νðσÞ ·ΩνðσÞ�g½δnνðσÞ þ ΔνðσÞ� − ie½v̂νðσÞ ×B� · ∂k½δnνðσÞ þ ΔνðσÞ�; ðF24Þ

where ΔνðσÞ is defined in Eq. (F2). To zeroth order of τ0, we have

δnνðσÞ ¼ δnνðσÞ ¼
X
α

cαhναðσÞ; ðF25Þ

where hναðσÞ are the bases introduced in the last subsection. Because of Eq. (F7), δnνðσÞ þ ΔνðσÞ is a constant aν, and due
to Eqs. (F10) and (F17), Eq. (F24) can be written as

γνðσ;BÞ
jvνðσÞj

�
ωþ i

τv

�
δnνðσÞ ¼ fq · v̂νðσÞ − eq ·B½v̂νðσÞ ·ΩνðσÞ�g

�
cν þ

X
ν0

�
f̄ν;ν0 þ

e2

ϵ0q2

�
βαðBÞcν0

�
: ðF26Þ

Integrating σ on both sides of this equation and applying Eq. (F16), we obtain
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�
ωþ i

τv

�
βνðBÞcν ¼ χν

eðq ·BÞ
4π2

�
cν þ

X
ν0

�
f̄ν;ν0 þ

e2

ϵ0q2

�
βν0 ðBÞcν0

�
: ðF27Þ

We introduce the variable ην ¼ βνðBÞcν, and then we obtain�
ωþ i

τv

�
χνην ¼

eðq ·BÞ
4π2βνðBÞ

ην þ
eðq · BÞ
4π2

X
ν0

�
f̄ν;ν0 þ

e2

ϵ0q2

�
ην0 ; ðF28Þ

which is of the same form as Eq. (B6).

APPENDIX G: THERMODYNAMIC PROPERTY
OF CHIRAL ZERO SOUND

We treat the CZS modes as bosonic quasiparticle
excitations. For each branch of CZS modes ωnðqÞ, we
assign a distribution function gnðq; r; tÞ, and in equilibrium
it is just the Bose-Einstein distribution, i.e.,

gð0Þn ðq; r; tÞ ¼ 1

expðωnðqÞ
kBT

Þ − 1
; ðG1Þ

where kB is the Boltzmann constant and T is the temper-
ature. Here we drop the “CZS” subscript for brevity. In the
following, we assume the magnetic field is applied along
the z direction, so the dispersion is ωnðqÞ ¼ cnqz.
First let us calculate the specific heat per unit volume

κðTÞ ¼ ∂
∂T

X
n

Z
jqj<Λ

d3q
ð2πÞ3

jcnqzj
expðjcnqzjkBT

Þ − 1

¼
X
n

kB

Z
Λ

−Λ

dqz
2π

Λ2 − q2z
4π

�
cnqz
kBT

�
2 1

4sinh2 cnqz
2kBT

¼
X
n

κnðTÞ; ðG2Þ

κnðTÞ ¼ kBΛ3

�
kBT
cnΛ

�
3

ZcnΛ=ðkBTÞ

−cnΛ=ðkBTÞ

dx
2π

×
½cnΛ=ðkBTÞ�2 − x2

4π

x2

4sinh2 x
2

; ðG3Þ

where Λ ∼ 1=a0 is the cutoff of q, a0 is a lattice constant,
and κn is the specific heat contributed by the nth branch of
the CZS. In the two limits cnΛ ≫ kBT and cnΛ ≪ kBT, we
have

κnðTÞ ¼
8<: kBΛ3 kBT

12cnΛ
; cnΛ ≫ kBT;

kBΛ3 1
6π2

; cnΛ ≪ kBT:
ðG4Þ

Now let us calculate the thermal conductivity. For an
inhomogeneous system, the distribution function satisfies
the Boltzmann equation

∂tgnðq; r; tÞ ¼ −cn∂zgnðq; r; tÞ −
gnðq; r; tÞ − gð0Þn ðq; r; tÞ

τsðTÞ
;

ðG5Þ

where τsðTÞ is the relaxation time for the CZS excitations.
At low temperature, the relaxation should be proportional
to τv. In the presence of a temperature gradient, the first-
order stationary solution reads

δgnðq; rÞ ¼ gnðq; rÞ − gð0Þn ðq; rÞ ≈ −τsðTÞðcn∂zTÞ

×
ωnðqÞ
kBT2

1

4sinh2 ωnðqÞ
2kBT

: ðG6Þ

The thermal current is given by

jthz ¼
X
n

Z
jqj<Λ

d3q
ð2πÞ3 ωnðqÞcnδgnðq; rÞ

¼ −τsðTÞ
X
n

Z
jqj<Λ

d3q
ð2πÞ3 cnðcn∂zTÞ

ω2
nðqÞ
kBT2

1

4sinh2 ωnðqÞ
2kBT

:

ðG7Þ

Therefore, the thermal conductivity is

σthi;j ¼ δi;zδj;zτsðTÞ
X
n

c2nκnðTÞ: ðG8Þ

APPENDIX H: STRONG MAGNETIC FIELD
AND FINITE TEMPERATURE

The above derivations are based on Boltzmann’s equa-
tion, which is valid only if ωBτ0 ≪ 1, ωB ≪ μ. Thus, it is
still unknown whether the CP and CZS modes exist in the
case ωBτ0 ≳ 1, ωB ≪ μ. Here we refer to this case as the
strong field case. In this case, the Landau levels are formed,
and there are many Landau levels under the chemical
potential. Therefore, the system should be described by
distribution functions on the Landau levels. Here we
expand this distribution function as an equilibrium part
and a small deviation from equilibrium

nνðk; α; tÞ ¼ nT ½ϵ0νðk; αÞ − μ�
þ δT ½ϵ0νðk; αÞ − μ�δnνðαÞeiðq·r−ωtÞ: ðH1Þ
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Here, k is the momentum along the magnetic field, α is
the Landau-level index, ϵ0νðk; αÞ are the Landau levels,
n0½ϵ0νðk; αÞ − μ� ¼ hψ†

kαψkαi is the occupation number in
equilibrium, and δ0ðϵÞ ¼ −∂ϵn0ðϵÞ. We assume the Landau
levels as [57]

ϵ0νðk; αÞ ¼

8>><>>:
ukþ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2eBα;

p
α > 0;

ukþ χvk; α ¼ 0;

uk − v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2eBjαj;

p
α < 0;

ðH2Þ

where juj < jvj such that the WP is type I [11]. In the
presence of scattering Eq. (E1), we can write the spectrum
function as [58]

A½ϵ0νðk; αÞ;ω� ¼
1

π

1=ð2τ0Þ
½ϵ0νðk; αÞ − μ − ω�2 þ 1=ð2τ0Þ2

; ðH3Þ

where τ0 is the quasiparticle lifetime [Eq. (E5)]. Therefore,
the occupation number is given by

nTðϵÞ ¼
Z

dω
1

1þ exp ω
kBT

Aðϵ;ωÞ; ðH4Þ

and its derivative is given by

δTðϵÞ ¼
Z

dω
1=ð2kBTÞ
1þ cosh ω

kBT

Aðϵ;ωÞ: ðH5Þ

Similar to the weak field case, we decompose δnνðαÞ as a
valley degree

δnν ¼
1

βνðBÞ
eB
2π

Z
dk
2π

X
α

δT ½ϵ0νðk; αÞ − μ�δnνðαÞ ðH6Þ

and a Fermi-surface degree

fδnνðαÞ ¼ δnνðαÞ − δnν; ðH7Þ

where

βνðBÞ ¼
eB
2π

Z
dk
2π

X
α

δT ½ϵ0νðk; αÞ − μ� ðH8Þ

is the compressibility at finite temperature. Here we assume
that eB > 0. Then, the kinetic equation of collective modes
can be written as

δT ½ϵ0νðk; αÞ − μ�
��

ωþ i
τv

�
δnν þ

�
ωþ i

τ0

�fδnνðαÞ�
¼ δT ½ϵ0νðk; αÞ − μ�q · vνðαÞ

×

�
δnνðαÞ þ

X
ν0

�
fν;ν0 þ

e2

ϵ0q2

�
βν0 ðBÞδnν0

�
: ðH9Þ

We define the disequilibrium quasiparticle number in the
νth valley as ην ¼ βνðBÞδnν. Then, to zeroth order of τ0,
integrating k and summing over α, we get�

ωþ i
τv

�
χνην ¼

eðq ·BÞ
4π2βνðBÞ

ην þ
eðq ·BÞ
4π2

×
X
ν0

�
fν;ν0 þ

e2

ϵ0q2

�
ην0 ; ðH10Þ

which has the exact form as Eq. (B6). It should be noticed
that due to Eq. (H2), only the zeroth Landau level
contributes to the integral on the rhs. One can easily verify
that the leading-order effect of τv is introducing an effective
damping rate, and the stable condition for the CZS and CP
modes is still given by Eqs. (E15) and (E17), respectively.

APPENDIX I: QUANTUM OSCILLATION IN
COMPRESSIBILITY

After the Landau levels are formed, the compressibility
at finite temperature is given by

βνðBÞ ¼
X
α

FðαÞ; FðαÞ ¼ eB
2π

Z
dk
2π

δ0½ϵ0νðk; αÞ − μ�:

ðI1Þ
Here we assume μ > 0. Using the Poisson equation, we
get [42]

βνðBÞ ¼ Fð0Þ − 1

2
Fð0þÞ þ 1

2
Fð0þÞ þ

X∞
α¼1

FðαÞ

¼ Fð0Þ − 1

2
Fð0þÞ þ

Z∞
0

dαFðαÞ

þ 2ℜ
X∞
l¼1

Z∞
0

dαFðαÞe2πilα: ðI2Þ

We define

βð0Þν ðBÞ ¼ Fð0Þ − 1

2
Fð0þÞ þ

Z∞
0

dαFðαÞ ðI3Þ

as the nonoscillating component and
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βðlÞν ðBÞ ¼ 2ℜ
Z∞
0

dαFðαÞe2πilα; l ≥ 1 ðI4Þ

as the oscillating components. βð0Þν ðBÞ is just the com-
pressibility in the weak field limit [Eq. (B4)]. Now let us

calculate βðlÞν ðBÞ. We use the relation

α ¼ Sνðϵ; kÞ
2πeB

− ϕνðϵ; kÞ; ðI5Þ

where Sν is the area enclosed by the fixed-energy circle in
the k plane. ϕðϵ; kÞ includes the Maslov index plus the
Berry phase. For linear isotropic WPs, we always have
ϕνðϵ;kÞ ¼ 0, and so in the following, we omit ϕνðϵ; kÞ.
Expanding Sνðϵ; kÞ as

Sνðϵ; kÞ ≈ Sex;νðϵÞ þ
1

2

∂2Sν
∂k2

				
ex
ðk − kexÞ2; ðI6Þ

we then have

βðlÞν ðBÞ ¼ ℜ
eB
π

Z∞
0

dα
Z

dk
2π

expði2πlαÞδT ½ϵ0νðk; αÞ − μ�

¼ ℜ
1

2π2

Z
dϵ

Z
dk
2π

dSex;νðϵÞ
dϵ

exp
�
i2πl

Sex;νðϵÞ þ 1
2
∂2Sν
∂k2 jexðk − kexÞ2
2πeB

�
δTðϵ − μÞ: ðI7Þ

Applying the Gaussian integral formula
R
∞
−∞ exp½ði=2Þax2�dx ¼ ½ð2πiÞ=a�12, we get

βðlÞν ðBÞ ¼ ℜ
1

4π3

Z
dϵ

�
l

				 ∂2Sν
∂k2

				
ex

1

2πeB

�−1
2 dSex;νðϵÞ

dϵ
exp

�
i2πl

Sex;νðϵÞ
2πeB

− i
π

4

�
δTðϵ − μÞ; ðI8Þ

where we assume ½ð∂2SνÞ=ð∂k2Þ� < 0. Substituting Eq. (H5) into the above equation, we get

βðlÞν ðBÞ ¼ ℜ
1

4π3

Z
dϵ

Z
dω

�
l

				 ∂2Sν
∂k2

				
ex

1

2πeB

�−1
2 dSex;νðϵÞ

dϵ
exp

�
i2πl

Sex;νðϵÞ
2πeB

− i
π

4

�
×

1=ð2kBTÞ
1þ coshð ω

kBT
Þ
1

π

1=2τ0
ðϵ − μ − ωÞ2 þ 1=ð2τ0Þ2

: ðI9Þ

Using the contour integral in the upper half plane of ϵ, we get

βðlÞν ðBÞ ¼ ℜ
1

4π3

Z
dω

�
l

				 ∂2Sν
∂k2

				
ex

1

2πeB

�−1
2 dSex;νðϵÞ

dϵ

				
ϵ¼μþωþi=ð2τ0Þ

exp
�
i2πl

Sex;νðμþ ωþ i
2τ0
Þ

2πeB
− i

π

4

�
×

1=ð2kBTÞ
1þ cosh ω

kBT

: ðI10Þ

We approximate Sex;νfμþ ωþ ½i=ð2τ0Þ�g as Sex;νðμÞ þ f½dSex;νðμÞ�=ðdμÞgfωþ ½i=ð2τ0Þ�g, then we have

βðlÞν ðBÞ ≈ℜ
1

8π3
dSex;νðμÞ

dμ

�
l

				 ∂2Sν
∂k2

				
ex

1

2πeB

�−1
2

exp

�
−
dSex;νðμÞ

dμ
l

2eBτ0

�
exp

�
i2πl

Sex;νðμÞ
2πeB

− i
π

4

�

×
Z

dω
1

kBT

expði dSex;νðμÞdμ
2ωl
2eBÞ

1þ cosh ω
kBT

: ðI11Þ

Now we need to calculate the integral on the second line of the above equation. We denote this integral as I. We choose the
contour −∞ → ∞ → ∞þ i2π → −∞þ i2π → −∞, and then we have

�
1 − exp

�
−2π

dSex;νðμÞ
dμ

kBTl
eB

��
I ¼ 4π

dSex;νðμÞ
dμ

kBTl
eB

exp

�
−π

dSex;νðμÞ
dμ

kBTl
eB

�
; ðI12Þ
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and thus,

I ¼ 2

sinchðdSex;νðμÞdμ
πkBTl
eB Þ

; ðI13Þ

where sinchðxÞ ¼ ðex − e−xÞ=ð2xÞ. Therefore, we get

βðlÞν ðBÞ ≈ 1

4π3
dSex;νðμÞ

dμ

�
l

				 ∂2Sν
∂k2

				
ex;μ

1

2πeB

�−1
2 expð− dSex;νðμÞ

dμ
l

2eBτ0
Þ

sinchðdSex;νðμÞdμ
πkBTl
eB Þ

cos

�
2πl

Sex;νðμÞ
2πeB

−
π

4

�
: ðI14Þ

For an isotropic Fermi surface, where ϵ ¼ vFjkj and
Sðϵ; kÞ ¼ π½ðϵ=vFÞ2 − k2], the first-order oscillation is
given by

βð1Þν ðBÞ ≈ 1
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βð1Þν ðBÞ
βð0Þν ðBÞ

≈
ωB

μ

expð−π μ
ω2
Bτ0
Þ

sinchð2π2 μkBT
ω2
B
Þ cos

�
Sex;νðμÞ
eB

−
π

4

�
: ðI16Þ

[1] H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw
Anomaly and Weyl Fermions in a Crystal, Phys. Lett. 130B,
389 (1983).

[2] S. Murakami, Phase Transition between the Quantum
Spin Hall and Insulator Phases in 3D: Emergence of a
Topological Gapless Phase, New J. Phys. 9, 356 (2007).

[3] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Topological Semimetal and Fermi-Arc Surface States in the
Electronic Structure of Pyrochlore Iridates, Phys. Rev. B
83, 205101 (2011).

[4] A. A. Burkov and L. Balents, Weyl Semimetal in a
Topological Insulator Multilayer, Phys. Rev. Lett. 107,
127205 (2011).

[5] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X.
Dai, Weyl Semimetal Phase in Noncentrosymmetric Tran-
sition-Metal Monophosphides, Phys. Rev. X 5, 011029
(2015).

[6] B.-J. Yang and N. Nagaosa, Classification of Stable Three-
Dimensional Dirac Semimetals with Nontrivial Topology,
Nat. Commun. 5, 4898 (2014).

[7] A. A. Burkov, M. D. Hook, and L. Balents, Topological
Nodal Semimetals, Phys. Rev. B 84, 235126 (2011).

[8] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac
Line Nodes in Inversion-Symmetric Crystals, Phys. Rev.
Lett. 115, 036806 (2015).

[9] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological
Node-Line Semimetal and Dirac Semimetal State in Anti-
perovskite Cu3PdN, Phys. Rev. Lett. 115, 036807 (2015).

[10] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological Nodal
Line Semimetals with and without Spin-Orbital Coupling,
Phys. Rev. B 92, 081201(R) (2015).

[11] A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer,
X. Dai, and B. A. Bernevig, Type-II Weyl Semimetals,
Nature (London) 527, 495 (2015).

[12] H. Weyl, Elektron und Gravitation. I, Z. Phys. 56, 330
(1929).

[13] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C.
Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N.
Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H.
Ding, Observation of Weyl Nodes in TaAs, Nat. Phys. 11,
724 (2015).

[14] B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P.
Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z.
Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng, and
H. Ding, Observation of Fermi-Arc Spin Texture in TaAs,
Phys. Rev. Lett. 115, 217601 (2015).

[15] S.-Y. Xu et al., Discovery of a Weyl Fermion Semimetal and
Topological Fermi Arcs, Science 349, 613 (2015).

[16] S.-Y. Xu et al., Discovery of a Weyl Fermion State with
Fermi Arcs in Niobium Arsenide, Nat. Phys. 11, 748 (2015).

[17] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S.
Jia, A. Bansil, H. Lin, and M. Z. Hasan, A Weyl Fermion
Semimetal with Surface Fermi Arcs in the Transition Metal
Monopnictide TaAs Class, Nat. Commun. 6, 7373 (2015).

[18] G. M. Andolina, F. M. D. Pellegrino, F. H. L. Koppens, and
M. Polini, Quantum Nonlocal Theory of Topological Fermi
Arc Plasmons in Weyl Semimetals, Phys. Rev. B 97, 125431
(2018).

[19] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M.
Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence
for the Chiral Anomaly in the Dirac Semimetal Na3Bi,
Science 350, 413 (2015).

[20] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H.
Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen,
Observation of the Chiral-Anomaly-Induced Negative Mag-
netoresistance in 3D Weyl Semimetal TaAs, Phys. Rev. X 5,
031023 (2015).

[21] C.-Z. Li, L.-X. Wang, H. Liu, J. Wang, Z.-M. Liao, and
D.-P. Yu, Giant Negative Magnetoresistance Induced by
the Chiral Anomaly in Individual Cd3As2 Nanowires, Nat.
Commun. 6, 10137 (2015).

HEAR THE SOUND OF WEYL FERMIONS … PHYS. REV. X 9, 021053 (2019)

021053-21

https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1038/nature15768
https://doi.org/10.1007/BF01339504
https://doi.org/10.1007/BF01339504
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1103/PhysRevLett.115.217601
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1103/PhysRevB.97.125431
https://doi.org/10.1103/PhysRevB.97.125431
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1038/ncomms10137


[22] C.-L. Zhang et al., Signatures of the Adler-Bell-Jackiw
Chiral Anomaly in a Weyl fermion Semimetal, Nat. Com-
mun. 7, 10735 (2016).

[23] H. Li, H. He, H.-Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan,
S.-Q. Shen, and J. Wang, Negative Magnetoresistance in
Dirac Semimetal Cd3As2, Nat. Commun. 7, 10301 (2016).

[24] D. Son and N. Yamamoto, Berry Curvature, Triangle
Anomalies, and the Chiral Magnetic Effect in Fermi
Liquids, Phys. Rev. Lett. 109, 181602 (2012).

[25] M. A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys.
Rev. Lett. 109, 162001 (2012).

[26] A. A. Burkov, Chiral Anomaly and Diffusive Magnetotran-
sport in Weyl Metals, Phys. Rev. Lett. 113, 247203 (2014).

[27] E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Chiral
Anomaly, Dimensional Reduction, and Magnetoresistivity
of Weyl and Dirac Semimetals, Phys. Rev. B 89, 085126
(2014).

[28] C.-X. Liu, P. Ye, and X.-L. Qi, Chiral Gauge Field and
Axial Anomaly in a Weyl Semimetal, Phys. Rev. B 87,
235306 (2013).

[29] M. Lv and S.-C. Zhang, Dielectric Function, Friedel
Oscillation and Plasmons in Weyl Semimetals, Int. J.
Mod. Phys. B 27, 1350177 (2013).

[30] I. Panfilov, A. A. Burkov, and D. A. Pesin, Density Re-
sponse in Weyl Metals, Phys. Rev. B 89, 245103 (2014).

[31] M. Stephanov, H.-U. Yee, and Y. Yin, Collective Modes of
Chiral Kinetic Theory in a Magnetic Field, Phys. Rev. D 91,
125014 (2015).

[32] J. Zhou, H.-R. Chang, and D. Xiao, Plasmon Mode as a
Detection of the Chiral Anomaly in Weyl Semimetals, Phys.
Rev. B 91, 035114 (2015).

[33] F. M. D. Pellegrino, M. I. Katsnelson, and M. Polini, Hel-
icons in Weyl Semimetals, Phys. Rev. B 92, 201407(R)
(2015).

[34] Z. Song, J. Zhao, Z. Fang, and X. Dai, Detecting the Chiral
Magnetic Effect by Lattice Dynamics in Weyl Semimetals,
Phys. Rev. B 94, 214306 (2016).

[35] P. Rinkel, P. L. S. Lopes, and I. Garate, Signatures of the
Chiral Anomaly in Phonon Dynamics, Phys. Rev. Lett. 119,
107401 (2017).

[36] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Consistent Chiral Kinetic Theory in Weyl
Materials: Chiral Magnetic Plasmons, Phys. Rev. Lett.
118, 127601 (2017).

[37] L. D. Landau, The Theory of a Fermi Liquid, Sov. Phys.
JETP 3, 920 (1957).

[38] A. A. Abrikosov and I. M. Khalatnikov, The Theory of a
Fermi Liquid (The Properties of Liquid 3He at Low
Temperatures), Rep. Prog. Phys. 22, 329 (1959).

[39] A. J. Leggett, A Theoretical Description of the New Phases
of Liquid 3He, Rev. Mod. Phys. 47, 331 (1975).

[40] G. E. Volovik, The Universe in a Helium Droplet,
International Series of Monographs on Physics Vol. 117
(Clarendon Press, Oxford, 2003).

[41] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzialoshinskii,
Methods of Quantum Field Theory in Statistical Physics
(Dover Publications, New York, 1975).

[42] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics:
Theory of the Condensed State (Elsevier, New York, 2013).

[43] D. Pines and P. Nozieres, Theory of Quantum Liquids,
Volume I: Normal Fermi Liquids (Westview Press, Boulder,
Colorado1994), Chap. 3, pp. 143–201.

[44] S.-K. Yip and T.-L. Ho, Zero Sound Modes of Dilute
Fermi Gases with Arbitrary Spin, Phys. Rev. A 59, 4653
(1999).

[45] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Chiral
Magnetic Effect, Phys. Rev. D 78, 074033 (2008).

[46] A. A. Zyuzin and A. A. Burkov, Topological Response in
Weyl Semimetals and the Chiral Anomaly, Phys. Rev. B 86,
115133 (2012).

[47] M.M. Vazifeh and M. Franz, Electromagnetic Response of
Weyl Semimetals, Phys. Rev. Lett. 111, 027201 (2013).

[48] Y. Chen, Si Wu, and A. A. Burkov, Axion Response in Weyl
Semimetals, Phys. Rev. B 88, 125105 (2013).

[49] D. Culcer, Y. Yao, and Q. Niu, Coherent Wave-Packet
Evolution inCoupledBands, Phys.Rev.B 72, 085110 (2005).

[50] D. Xiao, M.-C. Chang, and Q. Niu, Berry Phase Effects
on Electronic Properties, Rev. Mod. Phys. 82, 1959
(2010).

[51] D. Xiao, J. Shi, and Q. Niu, Berry Phase Correction to
Electron Density of States in Solids, Phys. Rev. Lett. 95,
137204 (2005).

[52] V. P. Silin, Theory of a Degenerate Electron Liquid, Sov.
Phys. JETP 6, 387 (1958).

[53] R. Lundgren, P. Laurell, and G. A. Fiete, Thermoelectric
Properties of Weyl and Dirac Semimetals, Phys. Rev. B 90,
165115 (2014).

[54] J. Xiang, S. Hu, Z. Song, M. Lv, J. Zhang, L. Zhao, W. Li, Z.
Chen, S. Zhang, J. Wang, Y.-f. Yang, X. Dai, F. Steglich, G.
Chen, and P. Sun, Giant Magnetic Quantum Oscillations in
the Thermal Conductivity of TaAs: Indications of Chiral
Zero Sound, arXiv:1801.08457.

[55] H. B. Nielsen and M. Ninomiya, Absence of Neutrinos on a
Lattice: (II). Intuitive Topological Proof, Nucl. Phys. 193B,
173 (1981).

[56] H. B. Nielsen and M. Ninomiya, Absence of Neutrinos on a
Lattice: (I). Proof by Homotopy Theory, Nucl. Phys. 185B,
20 (1981).

[57] A. A. Abrikosov, Quantum Magnetoresistance, Phys. Rev.
B 58, 2788 (1998).

[58] P. Coleman, Introduction toMany-Body Physics (Cambridge
University Press, Cambridge, England, 2015), Chap. 8,
p. 267.

ZHIDA SONG and XI DAI PHYS. REV. X 9, 021053 (2019)

021053-22

https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/ncomms10301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.113.247203
https://doi.org/10.1103/PhysRevB.89.085126
https://doi.org/10.1103/PhysRevB.89.085126
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1142/S0217979213501774
https://doi.org/10.1142/S0217979213501774
https://doi.org/10.1103/PhysRevB.89.245103
https://doi.org/10.1103/PhysRevD.91.125014
https://doi.org/10.1103/PhysRevD.91.125014
https://doi.org/10.1103/PhysRevB.91.035114
https://doi.org/10.1103/PhysRevB.91.035114
https://doi.org/10.1103/PhysRevB.92.201407
https://doi.org/10.1103/PhysRevB.92.201407
https://doi.org/10.1103/PhysRevB.94.214306
https://doi.org/10.1103/PhysRevLett.119.107401
https://doi.org/10.1103/PhysRevLett.119.107401
https://doi.org/10.1103/PhysRevLett.118.127601
https://doi.org/10.1103/PhysRevLett.118.127601
https://doi.org/10.1088/0034-4885/22/1/310
https://doi.org/10.1103/RevModPhys.47.331
https://doi.org/10.1103/PhysRevA.59.4653
https://doi.org/10.1103/PhysRevA.59.4653
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevB.88.125105
https://doi.org/10.1103/PhysRevB.72.085110
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.95.137204
https://doi.org/10.1103/PhysRevLett.95.137204
https://doi.org/10.1103/PhysRevB.90.165115
https://doi.org/10.1103/PhysRevB.90.165115
http://arXiv.org/abs/1801.08457
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1103/PhysRevB.58.2788
https://doi.org/10.1103/PhysRevB.58.2788

