Synopsis: Keeping track of electronic paths with attosecond resolution

A full quantum mechanical description of how light interacts with matter in higher-harmonic generation may lead to better control over the production of isolated and sequential attosecond ultraviolet pulses.
Synopsis figure
Illustration: T. Auguste et al., Phys. Rev. A (2009)

High-harmonic generation, a nonlinear optical process that occurs when a short burst of intense light irradiates a target, is an important method for producing attosecond (10-18s) length pulses of extreme ultraviolet (XUV) light. Classically, the light pulse ejects an electron from an atom in the target material into the continuum. When this electron is accelerated and then driven back to the parent ion by the laser field, the recombination of the electron with the ion leads to the emission of XUV light.

The quantum mechanical version of this process is somewhat of a generalization of the classical picture: the process is a coherent sum over all possible electron paths that the electron takes on its excursion from the atom. At high enough intensities, the wave function describing the atom and its associated electron is a sum over interferences between a “short” path (when the electron excursion time is a half laser cycle) and a “long” path (when the excursion time is close to a full laser cycle).

Until now, these interferences have not been observed because they are smoothed out in the collective response of the macroscopic XUV generating medium, which is typically a jet of gas. However, in a paper appearing in Physical Review A, Thierry Auguste and colleagues at the CEA in Saclay, France, and a team of researchers from France, the UK, and Switzerland have now demonstrated both theoretically and experimentally how to observe these interferences. They measure the quantum path interferences by properly spectrally and spatially filtering the XUV light generated from a pulsed argon jet irradiated by a focused high-intensity Ti:Sapphire laser.

These results demonstrate a mechanism to control the electron trajectory—and hence the higher harmonics of light emitted by its oscillation—with an accuracy approaching tens of attoseconds. – Frank Narducci


Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Atomic and Molecular Physics

Dressing a boson in a sea of fermions

Read More »

Next Synopsis

Related Articles

Synopsis: Tiny Oscillator Works as Photon Changing Room
Quantum Physics

Synopsis: Tiny Oscillator Works as Photon Changing Room

A new device converts the frequency of a photon using the vibrations in a mechanical oscillator. Read More »

Synopsis: All-Around Single-Photon Source
Quantum Information

Synopsis: All-Around Single-Photon Source

A quantum dot embedded in a micropillar is an efficient source of pure and indistinguishable single photons. Read More »

Viewpoint: Closing the Door on Einstein and Bohr’s Quantum Debate
Optics

Viewpoint: Closing the Door on Einstein and Bohr’s Quantum Debate

By closing two loopholes at once, three experimental tests of Bell’s inequalities remove the last doubts that we should renounce local realism. They also open the door to new quantum information technologies. Read More »

More Articles