Synopsis: Photons gained, photons lost

A new photon-counting technique is proposed for detecting excitations of an ultracold gas of atoms.
Synopsis figure
Credit: J. M. Pino et al., Phys. Rev. A (2011)

Studying spectra resulting from excitations is a standard tool to investigate many-body systems. In Bragg spectroscopy of ultracold atomic gases—a scattering process where a driving field subjects a gas to a perturbation—such spectra can be directly compared with theory. The system’s response to the perturbation is usually measured with a time-of-flight imaging technique of the atomic cloud. This method, however, is not particularly useful for low-momentum excitations and strong interactions, where the response of the system to the driving field can be hard to quantify.

In a paper published in Physical Review A, J. M. Pino and colleagues at JILA and at the University of Colorado get around this difficulty with a new technique, which measures the probing field’s complementary reaction to the gas. They count the photons gained or lost in one of the laser fields used to drive the excitations, using techniques that improve sensitivity by minimizing the effects of noise.

An interesting and powerful new feature of the photon-counting measurement technique is that, in contrast to the time-of-flight technique, it can be used to probe the dynamics of Bragg excitations during a single laser pulse. – Franco Dalfovo and Jihane Mimih


Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Next Synopsis

Soft Matter

Gels settle down

Read More »

Related Articles

Focus: Strong Light Reflection from Few Atoms
Optics

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Synopsis: Controlling a Laser’s Phase
Optics

Synopsis: Controlling a Laser’s Phase

A compact scheme can directly modulate the phase of a laser without a bulky external modulator. Read More »

Focus: Chip Changes Photon Color While Preserving Quantumness
Photonics

Focus: Chip Changes Photon Color While Preserving Quantumness

A new device that can potentially be scaled up for quantum computing converts visible light to infrared light suitable for fiber-optic transmission without destroying the light’s quantum state. Read More »

More Articles