Synopsis: Pointing toward stability

A theoretical proposal shows how pure quantum states can be turned into long-lasting states that are protected from decoherence.

In a cartoon version of a measurement, you might think of an old style voltmeter with a mechanical pointer settling down on a number. In somewhat the same vein, Wojciech Zurek coined the term “pointer states” in the 1980s to describe the quantum basis states that stably arise when a quantum system interacts with its classical environment during a measurement. Such states are interesting because they retain high fidelity (a figure of merit for how well information is preserved) and can last for a long time, both features of interest in quantum information processing. Writing in Physical Review A, Kaveh Khodjasteh at Dartmouth College, New Hampshire, and his colleagues describe their theoretical proposal for how to convert any pure quantum state into pointer states.

The problem of creating pointer states is somewhat similar to a process known as dynamic decoupling in quantum computation, where a control protocol is applied to the system, either in a series of pulses or a continuous modulation of some parameter, which removes interactions with the environment to prevent decoherence. In their twist on this theme, Khodjasteh et al. design explicit control recipes that permit transformation of the Hamiltonian of a system with initial pure states into an effective Hamiltonian with stable pointer states that are robust in the presence of environmental interaction. The researchers then tested the control sequences with numerical simulations of realistic one- and two-qubit systems. Creation of such pointer states may enable new kinds of classical memory storage as well as potential resources for quantum information processing. – David Voss


Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Out of many atoms, one photon

Read More »

Related Articles

Synopsis: Nanofiber Optical Memory
Quantum Information

Synopsis: Nanofiber Optical Memory

Light signals propagating down an ultrathin fiber can be temporarily stored in a cloud of cold atoms surrounding the fiber. Read More »

Synopsis: Entangled Static
Quantum Information

Synopsis: Entangled Static

Evidence of quantum entanglement is uncovered in an unlikely place: the electrical noise in a simple quantum conductor chilled to near zero. Read More »

Viewpoint: Single Dot Meets Single Ion
Atomic and Molecular Physics

Viewpoint: Single Dot Meets Single Ion

Researchers show that a single photon can transfer an excitation from a quantum dot to an ion. Read More »

More Articles