Synopsis: A Traffic Light for Photons

Theory shows that three-level atoms can overcome intrinsic problems with two-level systems in controlling the flow of photons.
Synopsis figure
S. Rosemblum et al., Phys. Rev. A (2011)

Efforts to implement quantum information processing with photonic qubits have focused on techniques for storing and gating individual photons. One possibility is to borrow a page from the work of researchers looking at control of electrons. In a phenomenon called Coulomb blockade, an electron tunnels through a barrier into a small capacitance device; the resulting voltage increase prevents another electron from tunneling in. For quantum information processing, the goal is to have a similar method for photon control and routing. Writing in Physical Review A, Serge Rosenblum at the Weizmann Institute of Science, Israel, and co-workers theoretically analyze the complications of doing so and suggest a way forward.

Recent demonstrations of photon blockade have relied on a two-level system such as an atom or a quantum dot coupled to a small resonant cavity: entry of one photon alters the cavity properties enough to prevent a second photon from entering. Rosenblum et al. find, however, that photon blockade, or in fact any effect based on a two-level system, has inherent limitations for photon routing. The reason is that a two-photon pulse short enough to transport both photons within the memory time of the system would have a bandwidth that is too large to establish a strong enough interaction. Instead, the authors propose and extensively analyze the use of a three-level system, which avoids these problems. Such a system combined with a modified cavity arrangement could provide a robust, efficient, and controllable method for controlling the traffic of photons. – David Voss


More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Atomic and Molecular Physics

Crowded Recombination

Read More »

Next Synopsis

Related Articles

Focus: Strong Light Reflection from Few Atoms

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Synopsis: Controlling a Laser’s Phase

Synopsis: Controlling a Laser’s Phase

A compact scheme can directly modulate the phase of a laser without a bulky external modulator. Read More »

Focus: Chip Changes Photon Color While Preserving Quantumness

Focus: Chip Changes Photon Color While Preserving Quantumness

A new device that can potentially be scaled up for quantum computing converts visible light to infrared light suitable for fiber-optic transmission without destroying the light’s quantum state. Read More »

More Articles