Synopsis: Quantum Optics Moves into the Nucleus

According to theoretical work, the tricks for controlling atoms with lasers should extend naturally into probing the nucleus.

Like atoms, nuclei have quantized energy states, which neutrons and protons fill according to the Pauli exclusion principle. Physicists have considered how laser techniques, similar to those used to study atoms, could directly probe the properties and transition frequencies of nuclei. However, exciting a nuclear transition would require an x-ray or gamma-ray laser with an intensity greater than 1020 Watts/cm2.

Though they don’t operate at this extreme intensity, x-ray lasers, such as the new Linac Coherent Light Source at SLAC, and XFEL, a planned free-electron laser in Europe, are revitalizing the idea of nuclear quantum optics. In a paper appearing in Physical Review A, Ian Wong and his colleagues at Princeton University, New Jersey, demonstrate the theoretical feasibility of nuclear quantum state control, where an x-ray laser excites a nucleus from an arbitrary initial state to an arbitrary final state.

The probability of a laser-driven transition between two states has a complicated dependence on the temporal shape of the laser pulse. Experimentalists have been successful at using this dependence to optimize a laser pulse for exciting a particular atomic state. Wong and his colleagues investigate the “landscape” of transitions for nuclei and show mathematically that this optimization method should work in nuclear systems as well.

Isotopes in the lanthanide and actinide series of the periodic table, many of which have optically active transitions below 10,000 electron volts, are likely the best candidates for laser-driven nuclear studies. – Jessica Thomas


More Announcements »

Subject Areas

OpticsNuclear Physics

Previous Synopsis

Nuclear Physics

Ringing Nuclear Resonances

Read More »

Next Synopsis


Wrestling with Infinities

Read More »

Related Articles

Synopsis: Enter the Metacage

Synopsis: Enter the Metacage

An array of equally spaced nanowires, dubbed a metacage, could block optical radiation from entering or escaping a region of arbitrary shape. Read More »

Viewpoint: Sharing Heat in the Near Field

Viewpoint: Sharing Heat in the Near Field

The maximum amount of radiative heat that can be transferred between two objects of any shape has been calculated for separations of less than the thermal wavelength. Read More »

Synopsis: Quantum Rocking Motion in Molecular Rotors
Quantum Physics

Synopsis: Quantum Rocking Motion in Molecular Rotors

A type of quantum oscillation—known to occur for electrons in a crystal—has now been observed in a gas of molecular rotors that are spun around by laser pulses. Read More »

More Articles