Synopsis: Accelerating the Stability of Lasers

By measuring the inertial forces that act on a laser system, researchers have been able to increase the stability of frequency emission by an order of magnitude over previous methods.
Synopsis figure
D. R. Leibrandt et al., Phys. Rev. A (2013)

Lasers that maintain a fixed emission frequency while being bumped and jostled are essential in applications from measuring the Earth’s gravitational field to searching for gravitational waves from distant objects. Researchers have obtained the best stability in controlled lab settings, typically because the optical elements needed to lock the frequency are sensitive to environmental vibrations. Writing in Physical Review A, David Leibrandt and colleagues at the National Institute of Standards and Technology, Colorado, report their success in using a feed-forward control circuit to achieve an improved immunity to environmental perturbations that might make field applications possible.

The NIST team started with a standard approach: the laser is passed through a reference cavity with a tightly controlled length. The measured difference between the resonance of the cavity and the laser frequency is used to adjust the laser so that the frequency is locked to the cavity length. Leibrandt et al. improved upon this “frequency servo” stabilization by placing accelerometers and gyroscopes on the reference cavity to measure linear and rotational accelerations. These signals were then fed forward to a device that modifies the output of the laser to adjust for the changes in cavity dimensions caused by accelerations. For added stability, they also measured the thermal state of the cavity and adjusted for temperature fluctuations.

With this setup, Leibrandt et al. report a frequency sensitivity to accelerations an order of magnitude lower than previously demonstrated, varying by less than one part in 1012 per g of acceleration. – David Voss


Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Next Synopsis

Biological Physics

Like Prefers Like, Except in a Virus

Read More »

Related Articles

Synopsis: Position Detector Approaches the Heisenberg Limit
Quantum Physics

Synopsis: Position Detector Approaches the Heisenberg Limit

The light field from a microcavity can be used to measure the displacement of a thin bar with an uncertainty that is close to the Heisenberg limit. Read More »

Viewpoint: Next Generation Clock Networks
Atomic and Molecular Physics

Viewpoint: Next Generation Clock Networks

Free-space laser links have been used to synchronize optical clocks with an unprecedented uncertainty of femtoseconds. Read More »

Focus: How to Make an Intense Gamma-Ray Beam
Optics

Focus: How to Make an Intense Gamma-Ray Beam

Computer simulations show that blasting plastic with strong laser pulses could produce gamma rays with unprecedented intensity, good for fundamental physics experiments and possibly cancer treatments. Read More »

More Articles