Synopsis: Magnetizing the Third Dimension

A magnetic structure that stores bits of information on multiple layers could lead to three-dimensional magnetic recording schemes.
Synopsis figure
Hirofumi Suto

Hard disk drives store data in magnetic materials where each bit of information is encoded in a 2D pattern of the material’s magnetization direction. The size of bits has rapidly decreased since the first hard disk drive was made in 1956, leading to a significant increase in the recording capacity. But miniaturization can’t go on forever. To meet ever-increasing data storage needs, future devices will need to move into the third dimension. Hirofumi Suto and colleagues at Toshiba Corporation in Japan have demonstrated a new 3D magnetic structure where the magnetization of each layer can be independently switched from one state to another in a single step.

The authors stacked two ferromagnetic layers made of cobalt and platinum on top of each other to form a two-bit nanometer-sized column structure. The thickness and composition of each layer were designed so that they had unequal ferromagnetic resonance frequencies. Both dc and microwave magnetic fields were applied to the bilayer stack to control its magnetization. Because of the layer-dependent resonance frequencies, a different magnetization excitation was induced in each layer by the microwave field. Therefore different dc magnetic field strengths were needed to flip the magnetization direction of each of the two layers. This allowed the authors to independently control the magnetization direction of each layer by simply tuning the frequency of the applied microwave field. The authors hope to be able to add additional layers to their nanocolumn, increasing the number of bits each contains and thus the potential recording density.

This research is published in Physical Review Applied.

–Katherine Wright


Announcements

More Announcements »

Subject Areas

Magnetism

Previous Synopsis

Next Synopsis

Related Articles

Focus: Electric Power from the Earth’s Magnetic Field
Magnetism

Focus: Electric Power from the Earth’s Magnetic Field

A loophole in a result from classical electromagnetism could allow a simple device on the Earth’s surface to generate a tiny electric current from the planet’s magnetic field. Read More »

Viewpoint: Liquid Light with a Whirl
Magnetism

Viewpoint: Liquid Light with a Whirl

An elliptical light beam in a nonlinear optical medium pumped by “twisted light” can rotate like an electron around a magnetic field. Read More »

Synopsis: How Spin Waves Bend
Spintronics

Synopsis: How Spin Waves Bend

Researchers have verified experimentally that the reflection and refraction of spin waves at an interface follow a Snell’s-like law. Read More »

More Articles