Synopsis: Not your typical insulator

A new study is looking at how disorder affects the conducting states in a topological insulator—revealing one of many ways these unusual materials are different from conventional insulators.
Synopsis figure
Illustration: Alan Stonebraker

The realization that even mundane band insulators can have unusual conducting edge states similar to what is seen in the quantum Hall effect, but without an external magnetic field, came as a huge surprise to the condensed matter community [1]. A number of studies have explored the unique properties of these so-called topological insulators. For example, while it is well known that in two dimensions a metal becomes an insulator in the presence of disorder, it is still a matter of debate whether this transition in a topological insulator occurs in the same way.

Writing in Physical Review B, Hideaki Obuse of RIKEN in Wako, Japan, and colleagues in the U.S. and Switzerland show how the topological state betrays itself after all. In conventional two-dimensional metals, the wave functions of the electrons at the metal-insulator transition are neither localized or delocalized, but are instead described by universal, largely model-independent critical exponents. While certain classes of models have not seen any difference in the scaling exponent of the diverging localization length in a topological insulator compared to a conventional metal, Obuse et al. show that even in this class of models, near the edge of a two-dimensional topological insulator the scaling properties of the electron wave functions are unique.

The authors argue that the distinction they predict can be directly tested in recently discovered two-dimensional topological insulator HgTe/(Hg, Cd)Te quantum wells. – Ashot Melikyan

[1] S. C. Zhang, Physics 1, 6 (2008).


Announcements

More Announcements »

Subject Areas

Semiconductor PhysicsMesoscopics

Previous Synopsis

Semiconductor Physics

Graphene asymmetries

Read More »

Next Synopsis

Nonlinear Dynamics

Turbulence in the troposphere

Read More »

Related Articles

Viewpoint: Chasing the Exciton Condensate
Semiconductor Physics

Viewpoint: Chasing the Exciton Condensate

Unusual interactions between charges have been observed in two closely separated graphene bilayers, a promising system in which to create a condensate of electron-hole pairs. Read More »

Focus: Detecting Photons With a Thermometer
Mesoscopics

Focus: Detecting Photons With a Thermometer

A new technique detects as few as 200 microwave photons at a time by the heat they supply to an electrical circuit. Read More »

Focus: Supersensitive Needle Magnetometer
Magnetism

Focus: Supersensitive Needle Magnetometer

A tiny, needle-shaped ferromagnet could form a magnetic sensor far better than the current best instruments, according to theory.   Read More »

More Articles