Synopsis: Unexpected response

The transport anomalies found in a bismuth alloy under moderate magnetic field might be the signature of unexpected many-body physics.
Synopsis figure

Pure bismuth holds a distinguished spot among elemental metals for its physical properties and uncommon electronic band structure. It is a semimetal with an extremely small Fermi surface, very low carrier density, and long mean-free-path, all of which combine to create an interesting situation: under a magnetic field of only 9 T the quantum limit is reached in which all electrons are confined to the lowest Landau level. Doping with antimony drives a semimetal-to-semiconductor transition and decreases the carrier density further. With a composition Bi0.9Sb0.1, bismuth becomes a topological insulator—an exotic state of matter predicted by theorists and recently observed in experiments (see [1]).

In very high magnetic fields, it is possible to reach the so-called ultraquantum regime in these materials: the electrons are still confined to the lowest Landau level, but their quantized orbits shrink to dimensions smaller than the Fermi wavelength. In a recent Rapid Communication appearing in Physical Review B, Arita Banerjee, Kamran Behnia, and coworkers from the Ecole Supérieure de Physique et de Chimie Industrielles in Paris, and colleagues in France and Japan, identify the quantum limit in semimetallic Bi0.96Sb0.04 at only 3 T, a moderate and easily accessible field by modern laboratory standards. Similarly to what was found in bismuth, they report several anomalies in the transport properties that are difficult to explain. They observe an unexpected peak in the Nernst signal—the appearance of a transverse electric field in response to a longitudinal thermal gradient—at 6 T, twice the quantum field limit. (In contrast, peaks in the Nernst signal in the ultraquantum regime of elemental bismuth occurred at magnetic fields corresponding to half-integer (3/2, 5/2, and 7/2) multiples of the quantum limit field.)

These unexpected anomalies in Bi0.96Sb0.04 are difficult to reconcile with current theoretical understanding and point to interesting many-body effects. – Alexios Klironomos

[1] S-C Zhang, Physics 1, 6 (2008).


Announcements

More Announcements »

Subject Areas

Semiconductor Physics

Previous Synopsis

Nanophysics

Molecules shake into place

Read More »

Next Synopsis

Mesoscopics

Interdot Kondo effect

Read More »

Related Articles

Focus: <i>Landmarks</i>—Accidental Discovery Leads to Calibration Standard
Semiconductor Physics

Focus: Landmarks—Accidental Discovery Leads to Calibration Standard

The quantum Hall effect, discovered unexpectedly 35 years ago, is now the basis for defining the unit of electrical resistance. Read More »

Synopsis: Spin Transport in Room-Temperature Germanium
Magnetism

Synopsis: Spin Transport in Room-Temperature Germanium

Germanium layers can carry spin-polarized currents over several hundred nanometers at room temperature, a key asset for spintronic applications. Read More »

Viewpoint: Crystal Vibrations Invert Quantum Dot Exciton
Semiconductor Physics

Viewpoint: Crystal Vibrations Invert Quantum Dot Exciton

Phonons assist in creating an excitation-dominated state, or population inversion, in a single quantum dot—an effect that could be used to realize single-photon sources. Read More »

More Articles