Synopsis: Solitons in an ionic crystal

Neutron scattering measurements indicate that intrinsic localized modes are found in thermal equilibrium in NaI, a simple ionic crystal.
Synopsis figure

Solitons are localized wave packets with finite energy that retain their shape over time. They are ubiquitous in driven nonlinear systems that are out of equilibrium, including optical fibers, magnets, micromechanical systems, and Josephson junctions. A long-standing question has been whether such modes exist in real solids at thermal equilibrium. The presence of these so-called “intrinsic localized modes” (ILMs) was first proposed in the 1980s, and many theoretical models have made similar predictions for solids that have a significant lattice anharmonicity, but experimental evidence has been lacking.

In an article appearing in Physical Review B, Michael Manley from Lawrence Livermore National Laboratory and collaborators from several other national laboratories and universities show that NaI, a simple three-dimensional ionic crystal, can support a single intrinsic localized mode in thermal equilibrium above 555 K. Inelastic neutron scattering measurements on both powders and single crystals show that the localized mode occurs at a single frequency of 299 meV, which lies near the center of a gap in the phonon spectrum. This mode’s energy does not depend on its wave vector, as expected of an ILM, and the mode gains energy with increasing temperature. These findings present the first observation of a three-dimensional intrinsic localized mode in a crystalline solid, and suggest an important role for such modes in the high-temperature physical properties of solids. – Sarma Kancharla


Announcements

More Announcements »

Subject Areas

Nonlinear DynamicsMaterials Science

Previous Synopsis

Related Articles

Focus: New Form of Carbon Stores Lots of Gas
Graphene

Focus: New Form of Carbon Stores Lots of Gas

Carbon honeycomb, a new carbon structure, could store large amounts of hydrogen gas, which may benefit fuel cell technology. Read More »

Synopsis: Trees Crumbling in the Wind
Materials Science

Synopsis: Trees Crumbling in the Wind

Lab experiments with wooden rods help explain why all trees—irrespective of size or species—break when battered by wind blowing at the same critical speed. Read More »

Synopsis: Growing Crystals in Macrosteps
Materials Science

Synopsis: Growing Crystals in Macrosteps

Simulations describe how crystals are able to grow past impurities by forming multilayer steps. Read More »

More Articles