Synopsis: Solitons in an ionic crystal

Neutron scattering measurements indicate that intrinsic localized modes are found in thermal equilibrium in NaI, a simple ionic crystal.
Synopsis figure

Solitons are localized wave packets with finite energy that retain their shape over time. They are ubiquitous in driven nonlinear systems that are out of equilibrium, including optical fibers, magnets, micromechanical systems, and Josephson junctions. A long-standing question has been whether such modes exist in real solids at thermal equilibrium. The presence of these so-called “intrinsic localized modes” (ILMs) was first proposed in the 1980s, and many theoretical models have made similar predictions for solids that have a significant lattice anharmonicity, but experimental evidence has been lacking.

In an article appearing in Physical Review B, Michael Manley from Lawrence Livermore National Laboratory and collaborators from several other national laboratories and universities show that NaI, a simple three-dimensional ionic crystal, can support a single intrinsic localized mode in thermal equilibrium above 555 K. Inelastic neutron scattering measurements on both powders and single crystals show that the localized mode occurs at a single frequency of 299 meV, which lies near the center of a gap in the phonon spectrum. This mode’s energy does not depend on its wave vector, as expected of an ILM, and the mode gains energy with increasing temperature. These findings present the first observation of a three-dimensional intrinsic localized mode in a crystalline solid, and suggest an important role for such modes in the high-temperature physical properties of solids. – Sarma Kancharla


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nonlinear DynamicsMaterials Science

Previous Synopsis

Related Articles

Viewpoint: Searching for Order in Turbulent Flow
Fluid Dynamics

Viewpoint: Searching for Order in Turbulent Flow

The observation of ordered flow patterns in a weakly turbulent liquid may lead to new ways of predicting the evolution of turbulent flow. Read More »

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

More Articles