Synopsis

Challenge to a dual

Physics 2, s57
The finding of a new duality theory could contribute to solving problems in quantum magnetism.
Illustration: Ashot Melikyan

Duality mapping is a powerful tool in high-energy, condensed matter, and statistical physics that establishes a connection between seemingly unrelated theories. In a nutshell, local observables of one theory are mapped onto spatially extended objects of the twin dual theory and vice versa. In some cases, especially in many-body problems involving strongly interacting particles, such duality mappings provide the only way to solve a problem, since their dual counterparts are theories with small coupling constants.

In a paper appearing in Physical Review B, Michael Hermele from the University of Colorado in the US proposes a new duality transformation that connects two distinct models—quantum chromoelectrodynamics in three space-time dimensions, or QCED3, and the Φ4 Ginzburg-Landau model with O(4) symmetry—both of which can be applied to understanding the behavior of frustrated planar antiferromagnets, such as Cs2CuCl4 or κ- (ET)2Cu2(CN)3. An unusual and valuable property of the duality found by Hermele is that the theories on both ends of the duality mapping are susceptible to perturbative analysis, which could be important for understanding the nature of the phase transitions and the critical behavior of these systems.

Beyond the applications to frustrated quantum antiferromagnets, these results are interesting in a wider context: Applied to other lattice spin models, the procedure suggested by Hermele might lead to a class of new duality transformations. Potentially, this duality will lead to a greater understanding of related fermionic theories such as QED3 (quantum electrodynamics in 2+1 dimensions), which was suggested as one of the candidates for the effective theory of the pseudogap phase in cuprate superconductors. – Ashot Melikyan


Subject Areas

MagnetismStrongly Correlated Materials

Related Articles

Magnetic Vortex Rings on Demand
Condensed Matter Physics

Magnetic Vortex Rings on Demand

Scientists have devised a promising method for generating and manipulating exotic spin patterns called magnetic vortex rings, which could have applications in energy-efficient data storage and processing. Read More »

Experimental Evidence for a New Type of Magnetism
Condensed Matter Physics

Experimental Evidence for a New Type of Magnetism

Spectroscopic data suggest that thin films of a certain semiconducting material can exhibit altermagnetism, a new and fundamental form of magnetism. Read More »

Altermagnetism Then and Now
Condensed Matter Physics

Altermagnetism Then and Now

Recent theoretical work has identified the possibility of a new and fundamental form of magnetism. Read More »

More Articles