Synopsis

A clean slate

Physics 2, s117
Scanning tunneling spectroscopy can take advantage of the high-quality surface of Fe1+δSe1xTex to learn more about iron-based superconductivity.
Illustration: T. Kato et al., Phys. Rev. B (2009)

Scanning tunneling spectroscopy (STS) has played a pivotal role in the investigation of the normal and superconducting states of the cuprate high-temperature superconductors because it can probe electronic properties, such as the superconducting energy gap, with atomic resolution.

Since STS is a surface-sensitive probe, the success of the method depends crucially on the quality of the crystal surface. Cleaved crystals should expose a single, atomically smooth plane, ideally without any surface reconstruction. In a Rapid Communication appearing in Physical Review B, Takuya Kato and collaborators from the Universities of Tokyo and Tsukuba in Japan carry out an STS investigation of Fe1+δSe1-xTex , which is structurally the simplest of the newly discovered iron-based high-temperature superconductors. They observe an atomically resolved square crystal lattice with no surface reconstruction; in contrast, other iron-based superconductors such as LaFeAsO1-xFx and BaFe2As2 have complicated surface structures that depend on how they were prepared. Kato et al. also measure a spatially homogeneous superconducting gap in Fe1+δSe1-xTex, in sharp contrast to the gap inhomogeneity present in cuprate superconductors, adding to the list of differences between these two classes of materials.

Given that it has such a simple structure and a high-quality surface that lends itself to STM measurements, Fe1+δSe1-xTex may prove to be the model system for a significant breakthrough in understanding iron-based superconductivity. – Alex Klironomos


Subject Areas

Superconductivity

Related Articles

Zero-Resistance State for a Potential High-Temperature Superconducting Nickelate
Superconductivity

Zero-Resistance State for a Potential High-Temperature Superconducting Nickelate

Researchers have measured a zero-resistance state for the nickelate La3Ni2O7, which measurements suggest may superconduct at temperatures above the boiling point of liquid nitrogen. Read More »

Composite Fermions Are Better Together
Quantum Physics

Composite Fermions Are Better Together

Particle pairing seen in nanoscale semiconductor devices could point the way to materials that superconduct at high temperatures. Read More »

Device Could Lead to New Current-Measurement Standard
Superconductivity

Device Could Lead to New Current-Measurement Standard

High-precision measurements of the oscillations generated by a superconducting device suggest that an improved electric-current-calibration standard should be possible. Read More »

More Articles