Synopsis: Two layers and light

A device based on photonic crystals exhibits strong optomechanical coupling.
Synopsis figure
Illustration: Roh et al., Phys. Rev. B. (2010)

The radiation force from a beam of light is extremely small because photons do not have a rest mass. However, substantial optomechanical coupling can be achieved in specially designed devices that have small mass and also exploit the properties of light under strong confinement. The applications range from manipulation of molecules to laser cooling of macroscopic objects [1].

In an article published in Physical Review B, Young-Geun Roh and collaborators from the Basic Research and Photonics Laboratories of NTT, Japan, and the Japan Science and Technology Agency report the development of a device that exhibits very strong optomechanical coupling. The device consists of a bilayer of photonic crystals—two semiconductor slabs with a periodic arrangement of holes bored in them—separated by a thin air gap and clamped on all sides to form a rectangular box. The researchers show that shining a laser beam on the device excites an optical resonance, which in turn causes a mechanical displacement of the photonic crystal slabs. They also observe modulation of the intensity of the reflected light from the device, caused by the coupling of the thermal vibrations of the slabs to the optical resonance. – Alex Klironomos

[1] Florian Marquardt and Steven M. Girvin, Physics 2, 40 (2009).


More Announcements »

Subject Areas


Previous Synopsis

Particles and Fields

A different way to look at dark matter

Read More »

Next Synopsis

Quantum Information

A smoother quantum measurement

Read More »

Related Articles

Synopsis: Position Detector Approaches the Heisenberg Limit
Quantum Physics

Synopsis: Position Detector Approaches the Heisenberg Limit

The light field from a microcavity can be used to measure the displacement of a thin bar with an uncertainty that is close to the Heisenberg limit. Read More »

Viewpoint: Next Generation Clock Networks
Atomic and Molecular Physics

Viewpoint: Next Generation Clock Networks

Free-space laser links have been used to synchronize optical clocks with an unprecedented uncertainty of femtoseconds. Read More »

Focus: How to Make an Intense Gamma-Ray Beam

Focus: How to Make an Intense Gamma-Ray Beam

Computer simulations show that blasting plastic with strong laser pulses could produce gamma rays with unprecedented intensity, good for fundamental physics experiments and possibly cancer treatments. Read More »

More Articles