Synopsis: Two layers and light

A device based on photonic crystals exhibits strong optomechanical coupling.
Synopsis figure
Illustration: Roh et al., Phys. Rev. B. (2010)

The radiation force from a beam of light is extremely small because photons do not have a rest mass. However, substantial optomechanical coupling can be achieved in specially designed devices that have small mass and also exploit the properties of light under strong confinement. The applications range from manipulation of molecules to laser cooling of macroscopic objects [1].

In an article published in Physical Review B, Young-Geun Roh and collaborators from the Basic Research and Photonics Laboratories of NTT, Japan, and the Japan Science and Technology Agency report the development of a device that exhibits very strong optomechanical coupling. The device consists of a bilayer of photonic crystals—two semiconductor slabs with a periodic arrangement of holes bored in them—separated by a thin air gap and clamped on all sides to form a rectangular box. The researchers show that shining a laser beam on the device excites an optical resonance, which in turn causes a mechanical displacement of the photonic crystal slabs. They also observe modulation of the intensity of the reflected light from the device, caused by the coupling of the thermal vibrations of the slabs to the optical resonance. – Alex Klironomos

[1] Florian Marquardt and Steven M. Girvin, Physics 2, 40 (2009).


Announcements

More Announcements »

Subject Areas

OpticsNanophysics

Previous Synopsis

Particles and Fields

A different way to look at dark matter

Read More »

Next Synopsis

Quantum Information

A smoother quantum measurement

Read More »

Related Articles

Synopsis: Taking Pictures with Single Ions
Atomic and Molecular Physics

Synopsis: Taking Pictures with Single Ions

A new ion microscope with nanometer-scale resolution builds up images using single ions emitted one at a time from an ion trap. Read More »

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence
Atomic and Molecular Physics

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence

By bathing a superconducting qubit in squeezed light, researchers have been able to confirm a decades-old prediction for the resulting phase-dependent spectrum of resonance fluorescence. Read More »

Synopsis: Polarons Drive a Magneto-Optical Effect
Magnetism

Synopsis: Polarons Drive a Magneto-Optical Effect

A surprisingly large magneto-optical response occurs when mobile electrons in a cooled material become trapped by their interaction with the surrounding lattice. Read More »

More Articles