Synopsis: Best of both worlds?

Photonic band gap structures combined with silicon nanocrystals may allow integration of optical circuits with current microchip technology.
Synopsis figure
Illustration: Y. Gong et al., Phys. Rev. B (2010)

The integration of optical circuits and conventional silicon devices would make it possible to synchronize multiple processors on a chip by means of light pulses. Unfortunately, the same silicon that underpins the vast CMOS (complementary metal-oxide-semiconductor) industry is only a mediocre light emitter.

The emission from nanocrystalline silicon is enhanced by quantum confinement, but the efficiencies are still marginal. As Yiyang Gong and colleagues at Stanford University in the US, in collaboration with Toshiba Corporation, Japan, report in Physical Review B, a route toward integrated silicon photon circuitry may lie in combining nanocrystal structures with photonic crystal nanocavities to boost light emission. Their work also identifies the barriers still to be overcome.

Photonic crystals are structures in which regular nanopatterning creates optical band gaps—frequency regions where light cannot propagate in the material. Resonant cavities made from photonic crystals could, in principle, promote radiative decay modes at the expense of useless nonradiative modes. Gong et al. find that silicon nanocrystals embedded in a silicon dioxide host matrix, when coupled to a high-quality-factor photonic crystal cavity, indeed show promise as fully CMOS compatible photonic elements, but they also point to photon absorption by free carriers as a drawback that needs attention. – David Voss


More Announcements »

Subject Areas


Previous Synopsis


Microtraps for ultracold atoms

Read More »

Next Synopsis

Related Articles

Synopsis: Enter the Metacage

Synopsis: Enter the Metacage

An array of equally spaced nanowires, dubbed a metacage, could block optical radiation from entering or escaping a region of arbitrary shape. Read More »

Viewpoint: Sharing Heat in the Near Field

Viewpoint: Sharing Heat in the Near Field

The maximum amount of radiative heat that can be transferred between two objects of any shape has been calculated for separations of less than the thermal wavelength. Read More »

Synopsis: Quantum Rocking Motion in Molecular Rotors
Quantum Physics

Synopsis: Quantum Rocking Motion in Molecular Rotors

A type of quantum oscillation—known to occur for electrons in a crystal—has now been observed in a gas of molecular rotors that are spun around by laser pulses. Read More »

More Articles