Synopsis: Shape shifting in superconductors

Superconducting transitions change the material’s phonon frequency and linewidth, but experiments now show that the line shape is altered as well.
Synopsis figure
Illustration: Adapted from F. Weber et al., Phys. Rev. B (2010)

Researchers observed long ago that the transition to a superconducting state changes the frequencies and linewidths of acoustic phonons involved in the formation of superconducting electron pairs. The effect is strongest for phonons with energy near the superconducting energy gap because in this region the coupling of phonons and electrons is more strongly impacted by the transition. The line shape, however, was not observed to change from its characteristic Lorentzian profile, a shape that is indicative of the intrinsic phonon lifetime.

This was the picture until deviations of the superconducting line shape from Lorentzian were observed in two borocarbide superconductors in the 1990s. This observation is consistent with a theory developed by Allen et al. [1] in which the electron-phonon coupling includes the mixing of vibrational and electronic excitations into hybrid modes.

Now, Frank Weber of Argonne National Laboratory and Lothar Pintschovius of the Karlsruhe Institute of Technology in Germany report in Physical Review B their use of high-resolution neutron spectroscopy to observe line shape distortions in superconducting niobium. In agreement with the theory of Allen et al., these new data show that the distortions are a general phenomenon and not restricted to one class of superconductors. For phonons close to the superconducting energy gap, these results also show that a precise determination of the gap energy can be made in a single phonon scan. – Brad Rubin

[1] P. B. Allen, V. N. Kostur, N. Takesue, and G. Shirane, Phys. Rev. B 56, 5552 (1997).


Announcements

More Announcements »

Subject Areas

Superconductivity

Previous Synopsis

Quantum Information

Atomic middle man

Read More »

Next Synopsis

Related Articles

Focus: Detecting Photons With a Thermometer
Mesoscopics

Focus: Detecting Photons With a Thermometer

A new technique detects as few as 200 microwave photons at a time by the heat they supply to an electrical circuit. Read More »

Viewpoint: A Tale of Two Domes
Condensed Matter Physics

Viewpoint: A Tale of Two Domes

Iron selenide films peppered with potassium atoms exhibit a high-temperature superconducting phase that emerges separately from a low-temperature superconducting phase. Read More »

Focus: <i>Landmarks</i>—Superconductor Quantizes Magnetic Field
Superconductivity

Focus: Landmarks—Superconductor Quantizes Magnetic Field

In 1961, confirmation that a magnetic field inside a superconducting ring is limited to discrete values demonstrated that superconducting electrons pair up. Read More »

More Articles