Synopsis: Imaging localized states in graphene nanostructures

Scanning-gate microscopy on a graphene quantum dot reveals localized states which influence transport properties.
Synopsis figure
Credit: S. Schnez et al., Phys. Rev. B (2010)

Graphene has attracted substantial interest in fundamental and applied research, which is partly motivated by the expectation of novel effects, and by the hope that graphene might complement silicon and other semiconductors in transistor technology. However, most of these prospects rely on successfully opening an energy gap in its otherwise gapless energy band structure. This can most easily be achieved by etching graphene into nanoribbons, which could act as the basic building blocks for more complicated nanostructures. Several research groups worldwide have succeeded in this endeavor. However, the microscopic nature of the gap and its effect on transport properties are still debated.

In a paper appearing in Physical Review B, Stephan Schnez and collaborators from the Solid State Physics Laboratory in ETH Zurich, study current transport in a graphene quantum dot connected to leads through two small constrictions. The researchers can locally alter the energy levels of the dot through an applied voltage from the sharp tip of an atomic-force microscope. Scanning the tip over the sample, they obtain current maps from which they deduce local electronic properties. Their measurements suggest that at least one localized state exists in the small constrictions within a small area, which strongly influence the coupling of the quantum dot to the leads. They infer a diameter of around 20nm for the localized states⎯an order of magnitude smaller than the characteristic dimension of the quantum dot. – Alex Klironomos


Features

More Features »

Announcements

More Announcements »

Subject Areas

NanophysicsGraphene

Previous Synopsis

Next Synopsis

Quantum Information

Squabbling spins in silicon

Read More »

Related Articles

Synopsis: Straining After Quantum Dots
Semiconductor Physics

Synopsis: Straining After Quantum Dots

The positions of quantum dots inside a microstructure can be determined by monitoring how an applied strain affects the dots’ photoluminescence.   Read More »

Viewpoint: A New Twist on Relativistic Electron Vortices
Nanophysics

Viewpoint: A New Twist on Relativistic Electron Vortices

Two studies explore the properties of vortices formed by electrons that travel at relativistic speeds. Read More »

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

More Articles