Synopsis: Imaging localized states in graphene nanostructures

Scanning-gate microscopy on a graphene quantum dot reveals localized states which influence transport properties.
Synopsis figure
Credit: S. Schnez et al., Phys. Rev. B (2010)

Graphene has attracted substantial interest in fundamental and applied research, which is partly motivated by the expectation of novel effects, and by the hope that graphene might complement silicon and other semiconductors in transistor technology. However, most of these prospects rely on successfully opening an energy gap in its otherwise gapless energy band structure. This can most easily be achieved by etching graphene into nanoribbons, which could act as the basic building blocks for more complicated nanostructures. Several research groups worldwide have succeeded in this endeavor. However, the microscopic nature of the gap and its effect on transport properties are still debated.

In a paper appearing in Physical Review B, Stephan Schnez and collaborators from the Solid State Physics Laboratory in ETH Zurich, study current transport in a graphene quantum dot connected to leads through two small constrictions. The researchers can locally alter the energy levels of the dot through an applied voltage from the sharp tip of an atomic-force microscope. Scanning the tip over the sample, they obtain current maps from which they deduce local electronic properties. Their measurements suggest that at least one localized state exists in the small constrictions within a small area, which strongly influence the coupling of the quantum dot to the leads. They infer a diameter of around 20nm for the localized states⎯an order of magnitude smaller than the characteristic dimension of the quantum dot. – Alex Klironomos


Announcements

More Announcements »

Subject Areas

NanophysicsGraphene

Previous Synopsis

Next Synopsis

Quantum Information

Squabbling spins in silicon

Read More »

Related Articles

Synopsis: Taking Pictures with Single Ions
Atomic and Molecular Physics

Synopsis: Taking Pictures with Single Ions

A new ion microscope with nanometer-scale resolution builds up images using single ions emitted one at a time from an ion trap. Read More »

Viewpoint: Chasing the Exciton Condensate
Semiconductor Physics

Viewpoint: Chasing the Exciton Condensate

Unusual interactions between charges have been observed in two closely separated graphene bilayers, a promising system in which to create a condensate of electron-hole pairs. Read More »

Focus: New Form of Carbon Stores Lots of Gas
Graphene

Focus: New Form of Carbon Stores Lots of Gas

Carbon honeycomb, a new carbon structure, could store large amounts of hydrogen gas, which may benefit fuel cell technology. Read More »

More Articles