Synopsis: Metals are supercool

Structural changes in an alloy may lead to a clearer picture of glass transitions in liquid metals.

Some metals stay liquid below their melting temperature (i.e., they can be supercooled) and eventually form a glass when cooled further. While metals are crystalline in solid form, metallic glasses are amorphous. Glassy metals⎯particularly metallic alloys that form thick bulk metallic glasses (BMG)⎯remain an attractive subject of study decades after their discovery.

In an article in Physical Review B, Victor Wessels at the Washington University in St. Louis and his collaborators demonstrate the existence of a rapid ordering process in a supercooled metallic liquid. The group used high-energy x rays from the Advanced Photon Source at Argonne National Laboratory to study structural changes in levitated Cu-Zr alloys as they cool. A rapid chemical and topological ordering of the supercooled liquid begins just 75C below the melting temperature⎯a remarkable 465C above the BMG transition⎯suggesting that the atoms become more ordered well before they finally “slow down” to form a glass.

Cu-Zr alloys, forming BMGs under different conditions, are an ideal system in which to test the physics of glassy metals as they form, pointing us to a clearer understanding of structural ordering prior to the glass transition in liquid metals. – Athanasios Chantis


Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Next Synopsis

Related Articles

Focus: New Form of Carbon Stores Lots of Gas
Graphene

Focus: New Form of Carbon Stores Lots of Gas

Carbon honeycomb, a new carbon structure, could store large amounts of hydrogen gas, which may benefit fuel cell technology. Read More »

Synopsis: Trees Crumbling in the Wind
Materials Science

Synopsis: Trees Crumbling in the Wind

Lab experiments with wooden rods help explain why all trees—irrespective of size or species—break when battered by wind blowing at the same critical speed. Read More »

Synopsis: Growing Crystals in Macrosteps
Materials Science

Synopsis: Growing Crystals in Macrosteps

Simulations describe how crystals are able to grow past impurities by forming multilayer steps. Read More »

More Articles