Synopsis: Odd topological superconductor

Experiments indicate that electrons pair in a spin-triplet state in the superconducting state of the topological insulator CuxBi2Se3.
Synopsis figure
Credit: Carin Cain

Bismuth selenide (Bi2Se3), a typical topological insulator, recently turned superconductor after careful intercalation of copper between the BiSe layers that make up this material. Apart from questions regarding how the material achieves superconductivity, the nature of the latter and its relation to the topological insulator state are attracting much interest.

Now, in an article published as a Rapid Communication in Physical Review B, Pradip Das and collaborators from the University of Tsukuba in Japan study the superconducting version of Bi2Se3 using magnetization measurements. The researchers find differences in the behavior of vortices from what is found in usual type-II superconductors. They conclude that their observations are consistent with odd-parity pairing and that the paired electrons form a spin-triplet state driven by strong spin-orbit interactions in the material, which is in agreement with recent theoretical predictions. – Alex Klironomos


Announcements

More Announcements »

Subject Areas

Superconductivity

Previous Synopsis

Atomic and Molecular Physics

Atoms down the tube

Read More »

Next Synopsis

Atomic and Molecular Physics

Repelling atoms reach quantum unison more easily

Read More »

Related Articles

Viewpoint: A Tale of Two Domes
Condensed Matter Physics

Viewpoint: A Tale of Two Domes

Iron selenide films peppered with potassium atoms exhibit a high-temperature superconducting phase that emerges separately from a low-temperature superconducting phase. Read More »

Focus: <i>Landmarks</i>—Superconductor Quantizes Magnetic Field
Superconductivity

Focus: Landmarks—Superconductor Quantizes Magnetic Field

In 1961, confirmation that a magnetic field inside a superconducting ring is limited to discrete values demonstrated that superconducting electrons pair up. Read More »

Viewpoint: Wiring Up Superconducting Qubits
Quantum Physics

Viewpoint: Wiring Up Superconducting Qubits

A qubit made of a semiconducting nanowire sandwiched between two superconductors could simplify the design of quantum information processing architectures. Read More »

More Articles