Synopsis

Majorana states thrive under interactions

Physics 4, s103
Calculations show that Coulomb interactions can play a positive role in the hunt for Majorana fermions.
Credit: E. M. Stoudenmire et al., Phys. Rev. B (2011)

Majorana fermions (particles that are their own antiparticles) are considered ideal building blocks for logic gates in a quantum computer because of their noncommutative exchange statistics. In addition, these particles emerge as low-energy excitations of so-called topological phases, which are robust against perturbations that can lead to decoherence and would therefore be a stable platform for quantum computation.

Majorana fermions have yet to be realized experimentally. One of the simplest systems predicted to have a topological phase supporting the particles is a one-dimensional superconducting wire, in which spin-orbit coupling is strong, in an applied magnetic field. But how interactions—certain to exist in any real material—affect this phase has been unclear. Now, in a paper appearing in Physical Review B, Miles Stoudenmire at the University of California, Irvine, and colleagues have shown that although repulsive Coulomb interactions suppress the pairing-induced energy gap in the bulk of the one-dimensional wires, they may have a beneficial effect too. Using a variety of powerful tools such as the density matrix renormalization group and bosonization, Stoudenmire et al. show that interactions actually expand the range of chemical potentials or magnetic fields in which the topological phase is expected to occur. As a further boost to experimental efforts, it is found that strong interactions can even drive a system to produce Majorana excitations without an external magnetic field. – Sarma Kancharla


Subject Areas

Strongly Correlated Materials

Related Articles

Squeezing a Wigner Solid
Strongly Correlated Materials

Squeezing a Wigner Solid

Researchers have made electrons crystallize into an anisotropic structure, which could lead to new insights into quantum many-body systems. Read More »

Electrically Controlling the Kondo Effect
Spintronics

Electrically Controlling the Kondo Effect

Spin-polarized electrons can suppress the experimental signature of the quantum many-body phenomenon known as the Kondo effect. Read More »

Lone Spin Remains Shielded Despite Superconductivity
Condensed Matter Physics

Lone Spin Remains Shielded Despite Superconductivity

Researchers explore the question of whether a Kondo cloud—a phenomenon common in conventional metals—can also occur in superconductors. Read More »

More Articles