Synopsis

ARPES with Cold Atoms

Physics 11, s30
A numerical study outlines how to perform measurements on cold atoms that mimic angle-resolved photoemission spectroscopy studies of solids.
A. Bohrdt et al., Phys. Rev. B (2018)

The atoms in a gas are normally easier to manipulate than the electrons in a solid, which is why physicists often use ultracold gases as analogs of condensed-matter systems. To probe these ultracold gases, a numerical study proposes using an analog of a condensed-matter experimental technique, called angle-resolved photoemission spectroscopy, or ARPES. If realized, such ARPES-like experiments would provide detailed spectra of the atoms in an ultracold gas. The approach could also provide a new avenue for exploring the physics underlying high-temperature superconductors.

ARPES is a common tool for investigating strongly correlated electrons in solids, such as topological materials and superconductors. The method uses a beam of light to kick out electrons whose momentum and energy are then measured. The spectrum of these photoemitted electrons reveals information about the electronic band structure in the material.

Annabelle Bohrdt from the Technical University of Munich in Germany and her colleagues envisaged ARPES-like measurements in the framework of quantum gas microscopy. The team’s proposed setup is a 1D optical lattice holding a chain of ultracold atoms. A tunable modulation to the lattice’s optical fields excites one atom from this 1D gas, causing it to be kicked into an adjacent “detection” lattice that is initially empty. The authors show how the momentum of this “photoemitted” atom can be measured by essentially letting it rattle around inside the detection lattice. In numerical simulations, the team generated an ARPES-like spectrum by varying the excitation energy for the kicked-out atoms. This technique could potentially be used to study quantum correlations among atoms that ​have been prepared to simulate ​a ​particular condensed-matter model. One such model might be the Fermi-Hubbard model, which is thought to be relevant to superconductivity.

This research is published in Physical Review B.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Atomic and Molecular PhysicsCondensed Matter Physics

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Thermal Conductivity Not Too Hot to Handle
Materials Science

Thermal Conductivity Not Too Hot to Handle

A radiometry technique directly measures thermal conductivity in molten metals and confirms the relationship with electrical resistivity. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

More Articles