Synopsis: Exclusive pions

A theoretical model can now accurately explain pions produced by the scattering of electrons off nucleons over a wide energy range.
Synopsis figure
Illustration: Courtesy of Jefferson Laboratory

The particles produced by scattering electrons off nucleons provide important information about the inner workings of the nucleus. At the Thomas Jefferson Lab National Accelerator Facility (JLAB) in the US and the Deutsches Elektronen-Synchrotron (DESY), Germany, these experiments are now being extended to using higher-energy electrons. These measurements will, for example, allow the observation of the production of single (“exclusive”) charged pions (the particles that mediate the strong nuclear force) over a wider range in energy and down to shorter distances.

Existing models are not able to explain all the properties of pion-production data in these high-energy experiments. Now, writing in Physical Review C, Murat Kaskulov and Ulrich Mosel at Universität Gießen in Germany propose a comprehensive description of exclusive charged-pion electroproduction that fits the data over a larger energy range than previously possible. By using duality arguments, Kaskulov and Mosel are able to reproduce both the cross sections measured at JLAB and the higher-energy data measured at DESY.

An important application of this model is that it can accurately extract from experiments the pion’s form factor (a measure of the particle’s shape), which is a quantity that cannot be determined without theoretical input. More generally, this theoretical advance will be useful for future high-energy experiments planned at the upgraded facility at JLAB. –Jessica Thomas


Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Fluid Dynamics

Sticky water

Read More »

Next Synopsis

Atomic and Molecular Physics

Tuning conductance

Read More »

Related Articles

Viewpoint: Can Four Neutrons Tango?
Nuclear Physics

Viewpoint: Can Four Neutrons Tango?

Evidence that the four-neutron system known as the tetraneutron exists as a resonance has been uncovered in an experiment at the RIKEN Radioactive Ion Beam Factory. Read More »

Synopsis: Throwing Nuclei in the Ring
Nuclear Physics

Synopsis: Throwing Nuclei in the Ring

By trapping nuclei in a particle storage ring, researchers characterize previously inaccessible nuclear reactions that take place in stellar explosions. Read More »

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays
Optics

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Slow light effects have been measured for x rays using a cavity filled with iron nuclei, where the speed of light was reduced by a factor of 10,000. Read More »

More Articles