Synopsis: Building a tower out of the vacuum

In particle physics theory, the presence of multiple metastable vacua gives rise to new possibilities for transitions between energy states.
Synopsis figure

The vacuum, in particle physics language, is the ground state of a theory. A metastable vacuum is a local minimum of the theory but not the true ground state. If a system is prepared initially in a metastable state it will eventually decay through tunneling to the true ground state.

The role of metastable states in particle physics has expanded considerably with the realization that supersymmetric field theories can be phenomenologically viable even when no ground state breaks supersymmetry spontaneously. These scenarios require long-lived metastable states that do not preserve supersymmetry.

In work appearing in Physical Review D, Keith Dienes and Brooks Thomas of the University of Arizona study decays of metastable ground states of supersymmetric theories with multiple “photons” (a theoretical extension of our usual notion) and matter that is charged with respect to two distinct photons. The authors show that these theories can be arranged to have multiple metastable states allowing for complex decay patterns to lower energy states. The authors find a rich array of possibilities, including collapsing decays to the lowest energy state, cascades through multiple intermediate energy metastable states, and more surprisingly perhaps, states into which decays are not possible. – Ansar Fayyazuddin


More Announcements »

Subject Areas

Particles and FieldsString Theory

Previous Synopsis


Cooling with magnets

Read More »

Next Synopsis

Related Articles

Synopsis: Little Higgs Gives Warm Inflaton a Hand

Synopsis: Little Higgs Gives Warm Inflaton a Hand

A concept borrowed from particle physics models called little Higgs gives new strength to the theory of warm inflation. Read More »

Synopsis: Spotting Dark Matter with Supermaterials
Particles and Fields

Synopsis: Spotting Dark Matter with Supermaterials

Superconducting aluminum or superfluid helium could be used to detect superlight dark matter particles. Read More »

Synopsis: Strange Mesonic Atoms Detected
Particles and Fields

Synopsis: Strange Mesonic Atoms Detected

The DIRAC collaboration at CERN reports the first statistically significant observation of an atom formed from a 𝜋 meson and a K meson. Read More »

More Articles