Synopsis

In full color

Physics 3, s180
Attempts to describe the binding of quarks with exact calculations make admirable headway.
Credit: Z. Bern et al., Phys. Rev. D (2010)

Quantum chromodynamics (QCD) is the theory explaining the binding of color-charged quarks into hadrons, where the interaction among the quarks is mediated by massless gluons. The scattering amplitudes of gluons have important practical relevance to collider physics, but actually computing these amplitudes is very complicated. Calculations are therefore performed perturbatively in the strength of what is called the gauge-coupling constant, which is a measure of the interaction between quarks and gluons.

A theory related to QCD, called maximally supersymmetric Yang-Mills theory, appears to allow the gluon scattering amplitudes to be computed exactly at all orders in perturbation theory, provided one assumes there is an infinite number of colors. However, since there are only three colors in QCD, it is important to extend the gluon scattering amplitudes computation in the Yang-Mills theory to a finite number of colors.

In a paper appearing in Physical Review D, Zvi Bern and collaborators at UCLA, Stanford University, and Pennsylvania State University, and at the CEA in Saclay, France, provide an important step in this direction. Using sophisticated techniques, the authors compute the scattering amplitudes of four gluons for any number of colors at four orders in the gauge coupling expansion.

Bern et al. rely on techniques that may ultimately provide a key input for the computation of scattering amplitudes of gravitons in a related gravity theory. Their results provide hints towards the first quantum mechanically consistent pointlike theory of gravity. – Alin Tirziu


Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles