Synopsis: Coming off the Grid

Theorists uncover universal effects underlying computer simulations of finite volume systems.
Synopsis figure
Courtesy Sebastian König, University of Bonn

Lattice gauge theory is the art and science of simulating the dynamics of particles and fields on computers. Most lattice computations approximate continuous space and time by a lattice—or a grid—of a finite size. However, such computations often suffer from “finite volume effects,” where the results depend on the size of the grid. These effects need to be understood and separated out from the results of simulations before one can get meaningful physical answers for the continuum, infinite volume theory of interest.

Writing in Physical Review D, Shahin Bour at the University of Bonn, Germany, and collaborators show that the finite volume corrections to the energy of bound states moving in a finite periodic box have a universal character that is topological in origin, that is, they are independent of the details of the system’s geometry. These corrections contain information about the number and masses of the constituents of the bound state. Bour et al. also compute finite volume corrections to calculations of the scattering of bound states.

The authors verify their analytical results against numerical calculations using effective field theory models and find good agreement. Bour et al.’s results will be useful both for extrapolating lattice quantum chromodynamics calculations to the infinite volume limit, and studying few-body scattering in nuclear and cold atom systems. – Urs Heller and Abishek Agarwal


Announcements

More Announcements »

Subject Areas

Particles and FieldsComputational Physics

Previous Synopsis

Gravitation

Wrestling with Infinities

Read More »

Next Synopsis

Nonlinear Dynamics

You Don’t Cite Me Anymore

Read More »

Related Articles

Synopsis: Spotting Dark Matter with Supermaterials
Particles and Fields

Synopsis: Spotting Dark Matter with Supermaterials

Superconducting aluminum or superfluid helium could be used to detect superlight dark matter particles. Read More »

Synopsis: Strange Mesonic Atoms Detected
Particles and Fields

Synopsis: Strange Mesonic Atoms Detected

The DIRAC collaboration at CERN reports the first statistically significant observation of an atom formed from a 𝜋 meson and a K meson. Read More »

Synopsis: Pentaquark Discovery Confirmed
Particles and Fields

Synopsis: Pentaquark Discovery Confirmed

New results from the LHCb experiment confirm the 2015 discovery that quarks can combine into groups of five. Read More »

More Articles