Synopsis

How to Spot a WIMP

Physics 8, s7
A theoretical study outlines the best strategies for identifying weakly interacting massive particles (WIMPs) in dark matter detectors.
C. H. Faham/Large Underground Xenon dark matter experiment

Weakly interacting massive particles (WIMPs) are among the leading candidates for dark matter. Experimentalists around the world are searching for the particles in deep underground laboratories, hoping to see WIMPs as they collide with the atoms of a detector, producing nuclear recoils. But a challenge is discriminating a dark matter signal from similar background signals produced by neutrons, neutrinos, and other particles. A comparison of different detection strategies by Julien Billard at the Institute of Nuclear Physics of the University of Lyon, France, highlights those that have the best chance of spotting the elusive particles.

Billard analyzed the three key observables that can be accessed when a WIMP collides with a detector: the number of recoiling particles, their energy, and their direction of travel. The latter can be a powerful signature of WIMPs: as the solar system orbits around the center of the Milky Way, it passes through the dark matter halo thought to be present in our Galaxy, creating a dark matter “wind” with a specific direction. For different detector configurations and background scenarios, Billard calculated how many WIMP-recoil events are needed to yield an unambiguous signal. He found that, in many cases, energy-resolved detection could yield a reliable signal with up to 1000 fewer recoils than required by strategies that only count events. A more modest boost comes from constraining the incoming direction of the dark matter particle. Dark matter detectors will soon become so sensitive that neutrinos from the sun, the atmosphere, or supernovae will generate a substantial background. According to Billard, being able to discriminate the number, energy, and direction of a possible dark matter event will therefore be crucial for claiming a discovery.

This research is published in Physical Review D.

–Matteo Rini


Subject Areas

AstrophysicsParticles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

More Articles