Synopsis

Tiny Bubbles Burn Just Fine

Physics 4, s141
Bubbles of hydrogen and oxygen burn spontaneously if they are small enough.

Making things smaller often changes their behavior. For example, flammable gases don’t burn easily in micron-sized bubbles, because the relatively large surface area sucks away the heat needed to sustain combustion. But making the bubbles even smaller can reverse the situation.

In an article in Physical Review E, Vitaly Svetovoy of the University of Twente in the Netherlands and colleagues show evidence for spontaneous combustion in bubbles smaller than 200 nanometers in diameter. To generate hydrogen or oxygen gas from water, the researchers apply brief negative or positive voltage pulses to a submerged metal electrode. Nanobubbles of either gas alone persist and aggregate into larger bubbles. In contrast, rapidly alternating the voltage polarity creates mixed bubbles that disappear as the gases react.

The explosive combustion mechanically damages the nearby electrode and also causes a tiny but measurable heating of a nearby conductor used as a thermometer. The researchers suggest that in such small bubbles, surface tension creates many atmospheres of pressure that enhance the reaction, and fast dynamics may also influence the reaction. — Don Monroe


Subject Areas

Fluid DynamicsChemical Physics

Related Articles

Link Verified between Turbulence and Entropy
Statistical Physics

Link Verified between Turbulence and Entropy

The verification of a 63-year-old hypothesis indicates that nonequilibrium statistical mechanics could act as a theoretical framework for describing turbulence. Read More »

Ocean Measurements Detect Conditions for Giant Waves
Fluid Dynamics

Ocean Measurements Detect Conditions for Giant Waves

Observations of the Southern Ocean show that wind can produce the surface states needed to generate rare “rogue” waves. Read More »

A Supernova Remnant Shaped by Vortices
Fluid Dynamics

A Supernova Remnant Shaped by Vortices

The clumpy structure of a ring of gas ejected by the progenitor star of the supernova 1987A could have formed when vortices in the gas interacted. Read More »

More Articles