Synopsis: Tiny Bubbles Burn Just Fine

Bubbles of hydrogen and oxygen burn spontaneously if they are small enough.

Making things smaller often changes their behavior. For example, flammable gases don’t burn easily in micron-sized bubbles, because the relatively large surface area sucks away the heat needed to sustain combustion. But making the bubbles even smaller can reverse the situation.

In an article in Physical Review E, Vitaly Svetovoy of the University of Twente in the Netherlands and colleagues show evidence for spontaneous combustion in bubbles smaller than 200 nanometers in diameter. To generate hydrogen or oxygen gas from water, the researchers apply brief negative or positive voltage pulses to a submerged metal electrode. Nanobubbles of either gas alone persist and aggregate into larger bubbles. In contrast, rapidly alternating the voltage polarity creates mixed bubbles that disappear as the gases react.

The explosive combustion mechanically damages the nearby electrode and also causes a tiny but measurable heating of a nearby conductor used as a thermometer. The researchers suggest that in such small bubbles, surface tension creates many atmospheres of pressure that enhance the reaction, and fast dynamics may also influence the reaction. — Don Monroe


Announcements

More Announcements »

Subject Areas

Fluid DynamicsChemical Physics

Previous Synopsis

Materials Science

Doubly Shocked

Read More »

Next Synopsis

Quantum Information

Mirror, Mirror in Free Space

Read More »

Related Articles

Synopsis: Bacteria Create Own Swim Lane
Biological Physics

Synopsis: Bacteria Create Own Swim Lane

Researchers calculate the size of a low-resistance buffer zone created by microbial organisms as they swim through the mucus lining of the stomach. Read More »

Synopsis: Internal Waves Take the Staircase Down
Fluid Dynamics

Synopsis: Internal Waves Take the Staircase Down

A theoretical study indicates that large-scale waves within the ocean can travel through “staircases” of water density, a motion that could enhance ice melting at the surface. Read More »

Viewpoint: Particles Move to the Beat of a Microfluidic Drum
Fluid Dynamics

Viewpoint: Particles Move to the Beat of a Microfluidic Drum

A thin vibrating plate can organize microscopic particles within a liquid into different patterns, an effect like that observed in 18th century studies of musical instruments. Read More »

More Articles