Synopsis: Force Diagrams on Skis

Simulations of skiers predict the danger zones on the slopes.
Synopsis figure
H. Holleczek and G. Tröster, Phys. Rev. E (2012)

At the Wearable Computing Lab at the Swiss Federal Institute of Technology in Zurich, researchers study data from sensors strapped to swimmers, runners, and rowers to help athletes perfect their performance. Now, two scientists at the lab, Thomas Holleczek and Gerhard Tröster, have turned their digital data collection toward the problem of sports safety. In a paper in Physical Review E, they compare simulations that predict which parts of a ski slope will have the highest speed and traffic—two factors related to accidents—with GPS data from 21 skiers descending slopes in the Swiss Alps.

Pedestrian models, such as those that predict how people in a crowded room exit in an emergency, account for the way humans respond to their surroundings with “social forces.” Skiers, for example, are repelled from one another and the side of the slopes, but feel an attraction to the bottom of the hill. In their simulations, which treat skiers as simple, massive particles, Holleczek and Tröster include these effective forces to determine which way a skier will turn, but calculate real forces (gravity, friction) to determine how the skiers accelerate.

The researchers simulated the trajectory, average speed, and number of turns of 600 skiers coming down the Graustock and Jochstock ski slopes at various points along the way. Compared with real skiers, the skiing particles are somewhat faster and streamlined along the center of the slope, which Holleczek and Tröster believe may be because real skiers face changes in friction from varying snow conditions, and make a greater number of turns. But their simulations do predict the zones with the highest speed and traffic, and could help engineers design safer slopes. – Jessica Thomas


Announcements

More Announcements »

Subject Areas

Interdisciplinary Physics

Previous Synopsis

Interdisciplinary Physics

Prime Numbers in Frozen Territory

Read More »

Next Synopsis

Related Articles

Focus: Eroding Grains Step by Step
Interdisciplinary Physics

Focus: Eroding Grains Step by Step

Experiments with an eroding stream of grains reveals a step pattern that implies the erosion is governed by collisions rather than friction. Read More »

Synopsis: Trees Crumbling in the Wind
Materials Science

Synopsis: Trees Crumbling in the Wind

Lab experiments with wooden rods help explain why all trees—irrespective of size or species—break when battered by wind blowing at the same critical speed. Read More »

Focus: Sensing Delays Control Robot Swarming
Interdisciplinary Physics

Focus: Sensing Delays Control Robot Swarming

A robot group clusters together or disperses based on each robot’s reaction time for sensing light, a finding useful for search-and-rescue missions.   Read More »

More Articles