Synopsis: No Free Lunch, or Measurements

New calculations determine the minimum cost of making a quantum measurement.
Synopsis figure
Courtesy Kurt Jabobs/University of Massachusetts

Quantum measurements are often treated as if they cost zero energy, but in a Physical Review E Rapid Communication, Kurt Jacobs, of the University of Massachusetts, Boston, quantifies the intrinsic cost of such measurements. He considers a measuring device that cyclically assesses the quantum states of a system, and stores this “information” in a quantum memory. Using a thought experiment to illustrate thermodynamic calculations, Jacobs shows that this measurement is like a heat engine extracting work from the system: Under certain conditions, the energy cost paid by the measurement is equal to the extracted work, which in turn is equal to the product of the initial temperature of the device and the average information obtained by the measurement.

In previous studies, the cost of a measurement was associated with the operation of erasing the measuring device’s memory. In his new work, Jacobs treats the measuring device as a sort of Maxwell’s demon and demonstrates that the measurement cost can be interpreted as intrinsic to the measurement process because it raises the entropy of the memory. In addition to addressing a fundamental issue, the result may have important implications for technologies such as quantum computing. – Ron Dickman


Announcements

More Announcements »

Subject Areas

Quantum PhysicsStatistical Physics

Previous Synopsis

Graphene

Identification by Bonds

Read More »

Next Synopsis

Optics

Optical Boomerangs

Read More »

Related Articles

Viewpoint: A Close Look at the Fermi-Hubbard Model
Quantum Physics

Viewpoint: A Close Look at the Fermi-Hubbard Model

The engineered simplicity of a cold-atom system described by the 2D Fermi-Hubbard model allows for a precision test of the model’s equation of state. Read More »

Focus: Water Molecule Spreads Out When Caged
Quantum Physics

Focus: Water Molecule Spreads Out When Caged

Water molecules confined in nanochannels exhibit tunneling behavior that smears out the positions of the hydrogen atoms into a pair of corrugated rings. Read More »

Synopsis: One-Way Quantumness
Quantum Physics

Synopsis: One-Way Quantumness

Experiments provide evidence for one-way quantum steering—an effect by which distant entangled systems can influence one another in a directional way. Read More »

More Articles