Synopsis

Sandy Scaling Law

Physics 10, s51
Theory, simulations, and experiments suggest that the performance of vehicle wheels of arbitrary shape rolling over sand can be predicted using scaled-down models.
J. Slonaker et al., Phys. Rev. E (2017)

Getting trapped in a sand pit is a nightmare scenario for space rovers like NASA’s Curiosity or, closer to home, for anyone who drives in the desert. But calculating exactly how a vehicle’s wheels interact with and move across billions of individual sand grains isn’t trivial. Now Ken Kamrin and colleagues at the Massachusetts Institute of Technology, Cambridge, have derived a set of scaling laws that relate the size, mass, and spin rate of a wheel, as well as the environment’s gravity, to its ability to move across a sand bed. The researchers suggest that these simple relations could be employed to accurately predict the performance of tanks, trucks, or space rovers in sandy environments using scaled-down vehicle models in the lab.

The team considered a wheel of arbitrary shape and mass rolling over a sandy surface with a fixed rotational rate. Treating the sand as one continuous medium rather than a collection of individual grains, they calculated how much the sand pushes back—the resistive force—as the wheel pushes down. This allowed them to derive scaling equations for how much power is needed to drive a wheel over the sand and for the resulting translational velocity with which the wheel moved. Experiments with differently sized cylindrical and lug wheels, which have four arms and appear to “walk” across the sand, digging little pockets of sand as they go, as well as simulations of bar-shaped wheels, which move by flipping end-over-end, showed good agreement with the theory as the wheels’ loading, spin rate, and ambient gravity were varied—the data all collapsed onto the same predicted lines.

This research is published in Physical Review E.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Subject Areas

Soft Matter

Related Articles

Prizes for Videos Featuring Mickey Mouse and Laptop Cables
Fluid Dynamics

Prizes for Videos Featuring Mickey Mouse and Laptop Cables

The winners of the third annual “Gallery of Soft Matter” competition included posters portraying robotic leaves and cannibalizing droplets and a video with what might be Steamboat Willie’s first appearance at the APS March Meeting. Read More »

Smooth Control of Active Matter
Soft Matter

Smooth Control of Active Matter

A theoretical study finds that the most energy-efficient way to control an active-matter system is to drive it at finite speed—unlike passive-matter systems. Read More »

Droplets Dance After They Merge
Soft Matter

Droplets Dance After They Merge

Water droplets can exhibit complex collective motions when they condense on a thin oil film. Read More »

More Articles