Synopsis

Different routes for reconnection

Physics 1, s4
Magnetic field lines in moving plasmas can break and reform, releasing large amounts of energy. Simulations suggest this happens in a two stage process—one slow and smooth, the other rapid and chaotic.

Reconnection occurs in moving plasmas when magnetic field lines come together, snap, and reform. These events can release tremendous amounts of energy and researchers believe that magnetic reconnection may help trigger powerful solar flares and contribute to auroral phenomena in Earth’s ionosphere.

Despite extensive study, however, reconnection events remain puzzling. Reconnection occurs in very localized regions, so how can the energy release be magnified to large scales and operate quickly enough to explain observations of astrophysical events? In the 13 June issue of Physical Review Letters, Giovanni Lapenta of the Katholieke Universiteit Leuven in Belgium reports simulations of reconnection that reveal two different scenarios. In the first, called the Sweet-Parker process, reconnection occurs slowly and smoothly as laminar magnetic field lines merge in a local region, but then a second and faster reconnection mechanism is possible. In this scenario, reconnection is rapid and chaotic, with many small regions of reconnection occurring randomly. These chaotic islands of reconnection in turn create energetic plasma circulation patterns that increase the speed of reconnection.

Such two-stage events, where slow reconnection evolves into fast self-feeding turbulent reconnection, may explain very large-scale energy release in highly magnetized astrophysical plasmas, but more needs to be done to compare the simulations with observational data. - David Voss


Subject Areas

Plasma Physics

Related Articles

Nuclear-Fusion Reaction Beats Breakeven
Plasma Physics

Nuclear-Fusion Reaction Beats Breakeven

Scientists have now vetted details of the 2022 laser-powered fusion reaction that produced more energy than it consumed. Read More »

Creating Fast Bunches of Electrons with Lasers
Optics

Creating Fast Bunches of Electrons with Lasers

The judicious shaping of a tube of plasma by one laser enhances the properties of electron bunches accelerated by another. Read More »

Nuclear Fusion Heats Up
Energy Research

Nuclear Fusion Heats Up

The observation of self-heating in magnetically confined plasmas represents a milestone on the road to fusion reactors based on such plasmas. Read More »

More Articles