Synopsis

Post-Minkowski gravity

Physics 1, s12
A “simple” closed-form Hamiltonian for a relativistic system of n gravitating particles, which depends only on the particles’ momenta and coordinates, is developed.
NASA/Tod Strohmayer (GSFC)/Dana Berry (Chandra X-Ray Observatory)

In 1916, shortly after the appearance of the theory of general relativity in essentially its final form, Albert Einstein and others started to work out “post-Newtonian” approximation methods that could be applied to systems where the gravitational field is weak and the velocity of the particles much less than that of light. Similar efforts led to the development of the “post-Minkowski” approximation, in which the field is still assumed to be weak but the particle motion is not necessarily small and can in fact be completely relativistic. Both approximations have been the basis for numerical studies of the gravitational waves emitted by binary black-hole and neutron-star systems—the most promising candidates for gravitational-wave detectors such as LIGO and VIRGO.

Analytic methods are often useful for describing general-relativistic dynamics. In an article appearing in the June 23rd issue of Physical Review Letters, Tomáš Ledvinka, Gerhard Schäfer, and Jiří Bičák, of Charles University in the Czech Republic and the Friedrich-Schiller-Universität in Germany, present a surprisingly simple closed-form, post-Minkowski Hamiltonian for a gravitating n-particle system that is fully relativistic and includes all terms linear in the gravitational constant G. Although this Hamiltonian does not include higher-order terms in G, the “particles” it describes can actually be strong-gravity objects such as black holes. As such, this Hamiltonian may prove useful in future studies of relativistic binary star systems. - Jerome Malenfant


Subject Areas

Gravitation

Related Articles

Exploring the Black Hole Population with an Open Mind
Gravitation

Exploring the Black Hole Population with an Open Mind

A new model describes the population of black hole binaries without assumptions on the shape of their distribution—a capability that could boost the discovery potential of gravitational-wave observations. Read More »

Gravity Measurement Based on a Levitating Magnet
Gravitation

Gravity Measurement Based on a Levitating Magnet

A new gravimeter is compact and stable and can detect the daily solar and lunar gravitational oscillations that are responsible for the tides. Read More »

Two Black Holes Masquerading as One
Gravitation

Two Black Holes Masquerading as One

Black holes may be less unique than previously thought, as the expansion due to a cosmological constant can hold apart a pair of holes and allow them to mimic a single black hole. Read More »

More Articles