Synopsis: Polarization in hot water

Molecular dynamics simulations show that thermal gradients – of order 1010 K over a meter - can polarize liquid water. The finding could have interesting implications for developing hyperthermal treatments that target cancer cells.
Synopsis figure

The Seebeck effect results from charge carrier diffusion along the thermal gradient. For water, however, Bresme, Lervik, Bedeaux, and Kjelstrip find that thermal reorientation of water molecules can lead to polarization of the bulk liquid, resulting in a sizeable electrostatic field. To examine this effect, the researchers carried out nonequilibrium molecular dynamics simulations with up to 3240 water molecules confined to a rectangular box having heat sources on the edges. As a reality check, the authors obtained good agreement between their simulated equation of state (which relates values such as temperature, pressure, volume and internal energy) and experimental data.

To obtain the electrostatic field gradient, Bresme et al. calculated the spatial charge distribution. For thermal gradients in the neighborhood of 1010 K/m they observe fields of about 108 V/m, but where do such extreme conditions exist? In fact, the authors note, these field gradients are characteristic of biomembranes and ionic thin films as well as of the conditions found in nanoparticle systems that experience heating from absorption of electromagnetic radiation. A better understanding of such effects may be relevant in proposals to destroy cancer cells with nanoparticles and radiation sources. - David Voss


Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Next Synopsis

Gravitation

Post-Minkowski gravity

Read More »

Related Articles

Synopsis: Bacteria Create Own Swim Lane
Biological Physics

Synopsis: Bacteria Create Own Swim Lane

Researchers calculate the size of a low-resistance buffer zone created by microbial organisms as they swim through the mucus lining of the stomach. Read More »

Synopsis: Cells Go with the Crowd
Biological Physics

Synopsis: Cells Go with the Crowd

A simple model suggests a way in which clusters of cells could follow concentration gradients in cases where individual cells cannot. Read More »

Synopsis: Identifying Whale Dialects
Biological Physics

Synopsis: Identifying Whale Dialects

A new spectral analysis method can automatically find differences in the calls of whales from separate groups. Read More »

More Articles