Synopsis

Putting the squeeze on many atoms

Physics 1, s22
Squeezed states can enhance the sensitivity of a detector and the storage capability of quantum memory devices. Because these features improve with an increase in system size, researchers are exploring ways to produce squeezed states in large ensembles of atoms.

In quantum mechanics, a squeezed state is characterized by two noncommuting observables, where one observable has a small variance at the expense of a large variance in the other, so that the uncertainty principle is satisfied. There is currently interest in preparing macroscopic squeezed states as this would improve the storage capability of quantum memory devices, such as atomic ensembles that store a state of light that can later be read out optically.

A macroscopic spin state—composed of many individual spins—can be squeezed provided that entanglement can be created within the system. Writing in Physical Review Letters, researchers at the Niels Bohr Institute in Copenhagen report the creation of a spin squeezed state in an ensemble of spin-polarized cesium atoms. They take advantage of entanglement between the nuclear and electronic spin states of the individual ground state atoms, rather than between the electronic spin states of different atoms in the ensemble.

At room temperature, about 1012 cesium atoms, each with a total spin of 4, are confined to a glass cell placed in a magnetic field. An applied laser pulse puts about 98% of the atoms into a state maximally polarized along one axis, creating a coherent spin state (a minimum uncertainty state) with macroscopic spin. Another light pulse creates the entanglement necessary to put the ensemble in a squeezed state. A tomographic reconstruction of the final quantum state verified that a collective spin squeezed state was produced. – Sonja Grondalski


Subject Areas

Quantum InformationOptics

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

More Articles