Synopsis

Graphene gets the hole thing

Physics 1, s21
By adsorbing and desorbing nitrogen dioxide, it is possible to add and remove charge carriers from graphene and induce a reversible metal-insulator transition.

The applicability of a new material for microelectronics depends on how well one can fine-tune the transport properties of its charge carriers. In a paper appearing in Physical Review Letters, Shuyun Zhou and colleagues from the University of California, Berkeley and Lawrence Berkeley National Laboratory use the tools of angle-resolved photoemission spectroscopy to demonstrate they can induce a reversible metal-insulator transition in epitaxial graphene with chemical doping.

The authors study single- and bilayer graphene grown on silicon carbide substrates, since this type of epitaxially grown graphene may have superior device performance compared to graphene sheets that are “peeled” from bulk graphite. The graphene layers are exposed to NO2 gas, which dopes the graphene layers with holes and pushes the Fermi energy within the gap between the conductance and valence bands, turning the graphene from a metal into an insulator [1]. With sufficient photon flux, the NO2 will desorb and the graphene will revert to being a metal.

This sort of control over transport properties opens possibilities to use expitaxially grown graphene for sensitive microelectronics, while also addressing the physics of hole-doping. – Sami Mitra

[1] K. Novoselov, Nature Mater. 6, 720 (2007).


Subject Areas

MesoscopicsGraphene

Related Articles

Graphene Has Topological Phonons
Condensed Matter Physics

Graphene Has Topological Phonons

New experiments reveal graphene’s exotic phonon spectrum with unprecedented detail and completeness. Read More »

Friction That Speeds Up an Object’s Motion
Graphene

Friction That Speeds Up an Object’s Motion

A friction-like quantum force could accelerate the motion of a rotating nanometer-diameter sphere when the sphere sits next to a graphene-coated surface.   Read More »

Giving Graphene a New Edge
Optics

Giving Graphene a New Edge

A photonic version of graphene hosts never-before-seen “twig” edge states—which could provide new avenues for realizing topological phases in graphene-like materials. Read More »

More Articles