Synopsis: Graphene gets the hole thing

By adsorbing and desorbing nitrogen dioxide, it is possible to add and remove charge carriers from graphene and induce a reversible metal-insulator transition.
Synopsis figure

The applicability of a new material for microelectronics depends on how well one can fine-tune the transport properties of its charge carriers. In a paper appearing in Physical Review Letters, Shuyun Zhou and colleagues from the University of California, Berkeley and Lawrence Berkeley National Laboratory use the tools of angle-resolved photoemission spectroscopy to demonstrate they can induce a reversible metal-insulator transition in epitaxial graphene with chemical doping.

The authors study single- and bilayer graphene grown on silicon carbide substrates, since this type of epitaxially grown graphene may have superior device performance compared to graphene sheets that are “peeled” from bulk graphite. The graphene layers are exposed to NO2 gas, which dopes the graphene layers with holes and pushes the Fermi energy within the gap between the conductance and valence bands, turning the graphene from a metal into an insulator [1]. With sufficient photon flux, the NO2 will desorb and the graphene will revert to being a metal.

This sort of control over transport properties opens possibilities to use expitaxially grown graphene for sensitive microelectronics, while also addressing the physics of hole-doping. – Sami Mitra

[1] K. Novoselov, Nature Mater. 6, 720 (2007).


More Announcements »

Subject Areas


Previous Synopsis

Quantum Information

Putting the squeeze on many atoms

Read More »

Next Synopsis

Atomic and Molecular Physics

Playing pool with atoms

Read More »

Related Articles

Viewpoint: Chasing the Exciton Condensate
Semiconductor Physics

Viewpoint: Chasing the Exciton Condensate

Unusual interactions between charges have been observed in two closely separated graphene bilayers, a promising system in which to create a condensate of electron-hole pairs. Read More »

Focus: Detecting Photons With a Thermometer

Focus: Detecting Photons With a Thermometer

A new technique detects as few as 200 microwave photons at a time by the heat they supply to an electrical circuit. Read More »

Focus: Supersensitive Needle Magnetometer

Focus: Supersensitive Needle Magnetometer

A tiny, needle-shaped ferromagnet could form a magnetic sensor far better than the current best instruments, according to theory.   Read More »

More Articles