Synopsis: Boosting interactions in BECs

Tuning the interactions between ultracold atoms leads to a strongly interacting superfluid with properties more akin to liquid helium than a dilute Bose-Einstein condensate.
Synopsis figure

In the mid-1990s, researchers cooled atomic vapors to temperatures low enough to form a dilute Bose-Einstein condensate (BEC) where the atoms would all lock together in a single ground state. Another famous superfluid discovered earlier—low-temperature liquid helium—is a Bose condensate with much stronger interactions. Now researchers at JILA and the University of British Columbia have been able to tune the atom-atom scattering length in a rubidium BEC to a strongly interacting regime reminiscent of liquid helium.

To adjust the interactions between rubidium-85 atoms, the team used a mechanism called a Feshbach resonance in which colliding atoms strongly interact if their kinetic energy is equal to the energy of a bound state involving both atoms. This resonance can be tuned with an applied magnetic field, resulting in an adjustable scattering length. To measure the spectrum of excitations in the BEC, the researchers use Bragg spectroscopy: two counter-propagating lasers form an interference pattern that acts essentially as a moving diffraction grating. Rubidium atoms are scattered off the grating with momentum transfer determined by the period of the grating. Images of the BEC yield the momentum transfer as a function of excitation energy and the results showed substantial deviations from the case of a dilute weakly interacting BEC.

The strongly interacting BEC is interesting from a theoretical standpoint, and the Bragg interference technique provides a useful means of monitoring how transferring energy and momentum into such a system determines its excitations. – David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Superfluids Hit the Street
Atomic and Molecular Physics

Viewpoint: Superfluids Hit the Street

A flow pattern dubbed the von Kármán vortex street, which is renowned for its aesthetic beauty and extreme power, has been created in a superfluid. Read More »

Viewpoint: Lamb Shift Spotted in Cold Gases
Atomic and Molecular Physics

Viewpoint: Lamb Shift Spotted in Cold Gases

Cold atomic gases exhibit a phononic analog of the Lamb shift, in which energy levels shift in the presence of the quantum vacuum. Read More »

Synopsis: Quantum Droplets Swell to a Macrodrop
Atomic and Molecular Physics

Synopsis: Quantum Droplets Swell to a Macrodrop

Experiments with ultracold magnetic atoms reveal liquid-like quantum droplets that are 20 times larger than previously observed droplets.    Read More »

More Articles